

PHARMAGOGNOSY

A COMPETITIVE EXAMINATION BOOK

COMPETITIVE EXAMINATION BOOK FOR

GPAT | NIPER | PHARMACIST | DRUG INSPECTOR

FOR FREE ONLINE SUPPORT

www.pharmacyindia.org

PHARMACOGNOSY

A Competitive Examination Book

Theory Book

GPAT | NIPER | DRUG INSPECTOR | PHARMACIST

DOWNLOAD OUR APP

Download PHARMACY INDIA App from Google Play Store

FOR FREE ONLINE SUPPORT

www.pharmacyindia.org

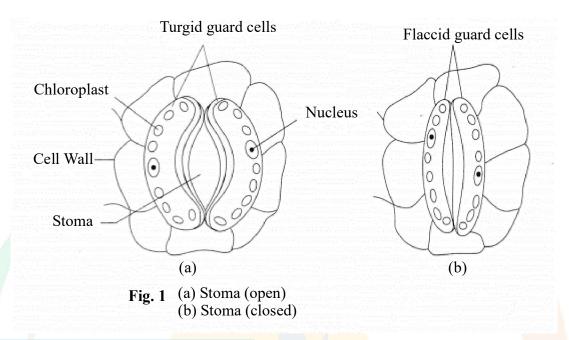
Contents

CHAPTER	PAGES
1. Introduction of Pharmacognosy	1-16
2. Important Chemical Tests	17-36
3. Analytical Pharmacognosy	37-41
4. Chemistry of Natural Product	42-45
5. Glycosides	46-78
6. Alkaloids	79-104
7. Volatile Oils	105-127
8. Lipids	128-131
9. Resins	132-139
10 Tannins	140-144
11. Carbohydrate	145-156
12. Plant Tissue Culture	157-161
13. Enzymes and Proteins	162-168
14. Fibres	169-172
15. Drugs of Mineral Origin	173-174
16. Marine Drugs	175-177
17. Rapid Revision	178-192

MORPHOLOGICAL CLASSIFICATION

- In this system, the drugs are arranged according to the morphological or external characters of the plant parts or animal parts, i.e. which part of the plant are used as a drug, e.g. leaves, roots, stem, etc.
- The drugs obtained from the direct parts of the plants and containing cellular tissues are called as organized drugs e. g. Rhizomes, barks, leaves, fruits, entire plants, hairs and fibres.
- The drugs which are prepared from plants by some intermediate physical processes such as incision, drying or extraction and not containing any cellular plant tissues are called as unorganized drugs, e. g. Aloe juice, opium latex, tragacanth etc.

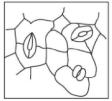
• Examples:

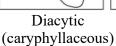

PARTS OF PLANT	CRUDE DRUGS
Woods	Quassia, Sandalwood.
Leaves	Digitalis, Eucalyptus, Tulsi, Vasaka
Barks	Arjuna, Ashoka, Cinchona, Cinnamon.
Flower parts	Clove, Saffron
Fruits	Amla, Anise, Bael, Coriander, Tamarind.
Seeds	Bitter almond, Black Mustard, Cardamom
Roots & Rhizomes	Garlic, Ginger, Shatavari, Turmeric
Plants and Herbs	Ephedra, Bra <mark>hmi, Ka</mark> lmegh, Vinca
Hair and Fibres	Cotton, Hemp, Jute

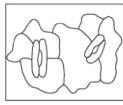
PHARMACOLOGICAL CLASSIFICATION

- Grouping of drug according to their pharmacological action or of most important constituent or their therapeutic
 use is termed as pharmacological or therapeutic classification of drug.
- This classification is more relevant and is mostly followed method.
- Drugs like digitalis, squill and strophanthus having cardiotonic action are grouped together irrespective of their parts used or phylogenetic relationship or the nature of phytoconstituents they contain.

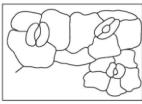
• Examples:

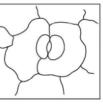

S.NO.	PHARMACOLOGICAL CATEGORY	EXAMPLE
1.	Drug acting on G.I.T.	
	Bitter	Cinchona, Quassia, Gentian
	Carminative	Fennel, Cardamom, Mentha
	Emetic	Ipecac
	Antiamoebic	Kurchi, Ipecac
	Laxative	Agar, Isabgol, Banana
	Purgative	Senna, Castor oil
	Cathartic	Senna
2.	Drug acting on Respiratory system	
	Expectorant	Vasaka, Liquorice, Ipecac
	Antitussive	Opium (codeine)
	Bronchodilators	E <mark>phe</mark> dra, Tea
3.	Drug acting on Cardiovascular system	
	Cardio tonic	Digitalis, Strophanthus, Squill
	Cardiac depressant	Cinchona, Veratrum
	Vasoconstrictor	Ergot
	Antihypertensive	Rauwolfi a

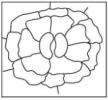



TYPES OF STOMATAL ARRANGEMENT

According to the arrangement of the epidermal cells surrounding the stomata, they have been grouped as follows:


S.NO	STOMATAL ARRANGEMENTS	OTHER NAME	EXAMPLES
1.	Diacytic or Caryophyllaceous (cross celled) The stoma is accompanied by two subsidiary cells, the long axis of which is at right angles to that of the stoma.	Labiatae type	Vasaka, tulsi, Spearmint and Peppermint.
2.	Anisocytic or Cruciferous (unequal celled) The stoma is surrounded by usually three subsidiary cells of which one is markedly smaller than the others.	Solanaceous type	Belladonna, Datura, Hyoscyamus, Stramonium, Tobacco
3.	Anomocytic or Ranunculaceous (irregular celled) The stoma is surrounded by a varying number of cells in no way differing from those of the epidermal cells.	-	Digitalis, Eucalyptus, Henna, Lobelia, Neem
4.	Paracytic or Rubiaceous (parallel celled) The stoma is surrounded usually by two subsidiary cells, the long axis of which is parallel to that of stoma.		Senna and Many Rubiaceous plants
5.	Actinocytic (radiate celled) The stoma is surrounded by circle of radiating cells.		Uva ursi





Anomocytic (ranunculaceous)

Antinocytic

Paracytic (rubiaceous)

Fig. Different types of stomata

INTERNATIONAL CLASSIFICATION OF ENZYMES

S.NO.	CLASS	TYPE OF REACTION CATALYZED	EXAMPLES
1.	Oxidoreductases	Transfer of electrons (hydride ions or H	Dehydrogenases,
		atoms)	Oxidases
2.	Transferases	Group transfer reactions	Transaminase, Kinases
3.	Hydrolases	Hydrolysis reactions (transfer of	Estrases, Digestive
	/ /	functional groups to water)	Enzymes
4.	Lyases	Addition of groupsto double bonds or	Phospho hexo
		formation of double bonds by removal	Isomerase,
		of groups	Fumarase
5.	Isomerases	Transfer of groups within molecules to	Decarboxylases,
		yield isomeric forms	Aldolases
6.	Lig <mark>ase</mark> s	Formation of CC, CS, CO, and CN	Citric acid synthetase
		bonds by condensation reactions	
		coupled to ATP cleavage	

FIBRES, SUTURES AND SURGICAL DRESSINGS

FIBRES

- Fibres may be defined as any hair-like raw material directly obtainable from an animal, vegetable, or mineral source and convertible into nonwoven fabrics such as felt or paper or, after spinning into yarns, into woven cloth.
- Examples of fibres Cotton, Jute, Flax, Hemp, Silk, Wool, Viscose, Alginate fibres, Terylene, Orlon, Nylon.

SURGICAL DRESSINGS

- A material used to protect a wound and to heal is called a surgical dressing. They serve various functions for the injured site.
- They remove wound exudates from the site, prevent infection, and give physical protection to the healing wound and mechanical support to the supporting tissues.
- Examples-Adsorbents, Bandages, Adhesive tapes, Protectives.

SUTURES AND LIGATURES

- A surgical suture is a thread or sting used for sewing or stitching together tissues, muscles, and tendons with the help of a needle.
- **Examples of sutures** are catgut, Kangaroo tendon, and synthetic polyesters.

MINERALS

- The substances of mineral origin have been used for various pharmaceutical purposes ranging from therapeutic agents to nutritional supplements to pharmaceutical excipient.
- These inorganic substances are found as mineral deposits of different types such as terrestrial deposits or fossil deposition of geological origin in ocean and seabeds.

IMPORTANT CHEMICAL TESTS

***** ALKALOIDS

S.NO.	TEST NAME	COMPOSITION	POSITIVE COLOUR CHANGE
1.	Dragendorff's Test	Drug solution + Dragendroff's reagent (Potassium Bismuth Iodide)	Orangish red colour
2.	Mayer's Test	Drug solution + few drops of Mayer's reagent (potassium mercuric iodide)	Creamy-white precipitant
3.	Hager's Test	Drug solution + few drops of Hagers reagent (Saturated aq. Solution of Picric acid)	Crystalline yellow precipitate
4.	Wagner's Test	Drug solution + few drops of Wagner's reagent (dilute potassium Iodide solution)	Reddish-brown precipitate
5.	Tannic Acid Test	Drug solution + few drops of tannic acid solution	Buff coloured precipitate
6.	Ammonia Reineckate Test	Drug solution + slightly acidified (HCl) saturated solution of ammonia reineckate	Pink flocculent precipitate

VITALI-MORIN TEST (TROPANE ALKALOID)

Tropane alkaloid + fuming nitric acid

Followed by evaporation to dryness

Addition of methanolic KOH solution to an acetone solution of nitrated residue

Violet colouration takes place due to tropane derivative.

TEST FOR NUX VOMICA

1. Strychnine Test:

To a section of endosperm + ammonium vanadate + sulphuric acid

Strychnine in the middle portion of endosperm is stained purple

2. Potassium dichromate test:

Strychnine + potassium dichromate + conc. Sulphuric acid

TANNINS

1. Goldbeater's skin test:

A piece of goldbeater's skin previously soaked in 2% hydrochloric acid

Note:- Hydrolysable and condensed tannins both give the positive goldbeater's test, whereas pseudotannins show very little colour or negative test.

 \downarrow

Washed with distilled water is placed in a solution of tannin

for 5 minutes

It is then washed with distilled water

Transferred to 1% ferrous sulphate solution

Note:- Hydrolysable and condensed tannins both give the positive goldbeater's test, whereas pseudotannins show very little colour or negative

A change of the colour of the goldbeater's skin to brown/black indicates the presence of tannin

2. Phenazone Test:

5ml aqueous solution of drug + 0.5g sodium acid phosphate

Warm the solution, cool, and filter

Add 2% phenazone solution to the filtrate.

All tannins are precipitated as bulky, coloured precipitate

3. Gelatin Test:

1% gelatine solution + few amount of 10% sodium chloride

If a 1% solution of tannin is added to the gelatine solution

Tannins cause precipitation of gelatine from solution

4. Test for Catechin (Matchstick Test):

Dip a matchstick in the dilute extract of the drug

Dry; moisten it with concentrated hydrochloric acid

Warm it near a flame

warm it near a mame

Catechin in the presence of acid produces phloroglucinol which stains the lignified wood pink or red

5. Test for chlorogenic acid:

A dilute solution of chlorogenic acid containing extract

If treated with aqueous ammonia and exposed to air

Slowly turns green indicating the presence of chlorogenic acid

ANALYTICAL PHARMACOGNOSY

MORPHOLOGICAL EVALUATION

- Wavy shape of rauwolfia
- Pungent taste of capsicum and ginger
- Brown colour of cinnamon

MICROSCOPICAL EVALUATION

- The characteristic of cell walls, cell content, types and size of starch grain, type of calcium oxalate crystals, types of trichome, types of stomata(stomatal no., stomatal index, palisade ratio) vein islet no, vein termination no. length of fibres, and vessels.
- Lignified trichomes are found in nuxvomica.
- Warty trichomes in senna.
- Wavy medullary rays in cascara bark.
- Glandular trichomes of mint.
- Powdered cloves do not contain sclereids or calcium oxalate crystals, but both of them are present in cloves stalks.
- Presence of nonlignified vessels in powder of rhubarb and ginger indicates adulterations.
- Diameter of starch grain is 10 micron and hence useful for detection of adulterants.
- Lignin + drop of phloroglucinol + conc. HCl → Gives red stain
- Mucilage + rheuthenium red -> Gives pink stain
- Cellulose + dissolve in cuoxam \rightarrow Swells
- Hemicellulose and starch + N/50 iodine solution \rightarrow Stained blue

LEAF CONSTANTS

- Palisade ratio: average number of palisade cells beneath each epidermal cell.
- Vein islet number: number of vein islet per sq mm of the leaf surface midway between the midrib and margin.
- Vein termination number: number of veinlet termination per sq mm of the leaf surface midway between the midrib and margin.
- Stomatal number: average number of stomata per sq area of the epidermis of the leaf.
- Stomatal index: The percentage which the no. of stomata formed to the total no. of epidermal cells.

S.I = Stomatal index

S = No. of stomata per unit area.

$$S. I = \frac{S}{E+S} \times 100$$

E = No of epidermal cell in the same unit area

2.	Salkowaski test	Alcoholic extract of drug was	Formation of yellow
		evaporated to dryness→Extracted	coloured ring at the junction
		with CHCl3→Then add conc. H2	of two liquid, which turns
		SO4 from sidewall of test tube to	red after 2 min, indicate the
		the CHCl3 extract	presence of steroid moiety
3.	Antimony	Alcoholic extract of drug was	Formation of pink colour on
	trichloride test	evaporated to dryness→Extracted	heating indicates presence
		with CHCl3→Then add saturated	of steroids an triterpenoids
		solution of SbCl3 in CHCl3	
		containing 20% acetic anhydride	
4.	Trichloro acetic	Triterpenes on addition of saturated	Forms coloured precipitate
	acid test	solution of trichloro acetic acid	
5.	Tet <mark>ran</mark> itro	unsaturated steroids and triterpenes	Forms yellow colour
	methane test	+ Tetranitro methane	
6.	Z <mark>i</mark> mmermann	Meta dinitrobenzene solution +	It forms violet colour in
	test	alcoholic solution of drug	presence of keto steroid
		containing alkali→On heating	
D. Chem	ical Tests for Card	iac Glycosides	
1.	Keller-kiliani	Alcoholic extract of drug→Add	Reddish brown layer is
	test	equal volume of water and 0.5 ml of	formed, which turns b <mark>luish</mark>
		strong lead acetate solution→Then	green after standing due to
		shaked and filtered→Filtrate was	presence of digitoxose
		extracted with equal volume of	
		chloroform→Chloroform extract	
		was evaporated to	
		dryness→Residue was dissolved in	
		3 ml of glacial acetic acid followed	
		by addition of few drops of FeCl3	
		solution > The resultant solution	
		was transferred to a test tube	
		containing 2 ml of conc. H2SO4.	
2.	Legal test	Alcoholic extract of drug→Then	Formation of pink colour in
		equal volume of water and 0.5 ml of	presence of glycosides or
		strong lead acetate solution was	aglycon moiety
		added→Shaked and	
		filtered→Filtrate was extracted with	
PLA		equal volume of chloroform > The	
		chloroform extract was evaporated	
		to dryness→The residue was	
		dissolved in 2 ml of pyridine→Then	
		sodium nitropruside 2 ml was added	
		followed by addition of NaOH	
		-	
		solution to make alkaline	

CHEMICAL TESTS

S. NO.	TEST NAME	COMPOSITION	COMPOSITION
1.	Dragendorff's Test	Drug solution + Dragendroff 's reagent (Potassium Bismuth Iodide)	Orangish red colour
2.	Mayer's Test	Drug solution + few drops of Mayer's reagent (potassium mercuric iodide)	Creamy-white precipitant
3.	Hager's Test	Drug solution + few drops of Hagers reagent (Saturated aq. Solution of Picric acid)	Crystalline yellow precipitate
4.	Wagner's Test	Drug solution + few drops of Wagner's reagent (dilute Iodine solution)	Reddish-brown precipitate
5.	Tannic Acid Test	Drug solution + few drops of tannic acid solution	Buff coloured precipitate
6.	Ammonia Reineckate Test	Drug solution + slightly acidified (HCl) saturated solution of ammonia reineckate	Pink flocculent precipitate

DRUG CONTAINING ALKALOIDS

S.NO.	CLASS	STRUCTURE	EXAMPLE	SYNONYM
1.	Pyridine Piperidine alkaloids	N H N	Tobacco, Areca, Lobelia	Betel nut, supari Asthma weed, tobacco
		Pyaridine Piperidine		
2.	Tropane alkaloids	N	Belladona, Datura, Hyoscyamus, Stramonium, Dubosia, Coca leaves Ashwagnadha	Deadly night shade leaf Henbane Thornapple, jamstownweed
3.	Quinoline alkaloids		Cinchona, Camptotheca	Peruvian bark Cancer tree
4.	Isoquinoline alkaloids	₩ N	Opium, Ipecac, Curare, Berberis Sanguniria	Americanarrowroot poison Blood root
5.	Indole alkaloids	N H	Ergot, Nux vomica, Rauwolfia, Catharanthus, Physostigma	Claviceps Crowfig seed Sarpgandha ,Indian snake root Callabus

SOLUBILITY	ACTIVE FOR	M	INACTIVE FORM	SALT FORM
Water soluble	Ergometrine		Ergometrinine	Ergotamine maleate
Water insoluble	Ergotamine		Ergotaminine	Ergotamine tartarate
	Ergocristine — Erg Ergocornine — Erg	gotoxine		

Solubility Active form Inactive form Salt form

Water soluble Ergometrine, Ergometrinine, Ergotamine maleate

Water insoluble Ergotamine, Ergotamine, Ergotamine tartarate

Ergocristine, Ergocryptine, Ergotoxine, Ergocornine

• Ergot also contain pigment → Ergosterol, Fungisterol

Chemical Tests: -

1. Ergot \rightarrow under UV light \rightarrow shows a red-coloured fluorescence

2. Van Urk's test:

Ergot powder + p-dimethyl aminobenzaldehyde(Van urk's reagent) (0.1g) + H2SO4 (35%, v/v, 100 ml) + 5% ferric chloride (1.5ml) → deep blue colour is produced

3. Ergometrine + water → blue fluorescence

Uses: -

- Ergot is oxytocic, vasoconstrictor and abortifacient
- Used to assist delivery and to reduce post-partum haemorrhage
- Lysergic acid diethylamide (LSD-25) is a potent specific psychotomimetic
- Ergometrine is oxytocic and used in delivery
- Ergotamine and the semisynthetic dihydroergotamine salts are used as specific analgesics for the treatment of migraine
- Ergotoxine methane sulphate is used by geriatric patients for the treatment of dementia

Substitutes

- Ergot of wheat
- Ergot of oats
- Ergot of diss

RAUWOLFIA

Synonyms: - Sarpagandha, Chandrika; Chootachand; Indian snake root.

Biological Source: - Dried roots of Rauwolfia serpentina

Family: - Apocynaceae

Microscopy

- Transverse section of the root shows a stratified cork
- Cells of secondary cortex are parenchymatous and contain starch grains
- Phloem is narrow and consists of parenchyma with scattered sieve tissue
- Xylem is wide, entirely lignified
- Roots and rhizomes are identified by central pith

VOLATILE OILS

INTRODUCTION

- Volatile oils are odorous volatile principles of plant and animal source
- Evaporate when exposed to air at ordinary temperature, and hence known as volatile or etheral oils.
- These represent essence of active constituents of the plant and hence also known as essential oils.
- Volatile oils are → freely soluble in ether and in chloroform
 - → Fairly soluble in alcohol
 - → Insoluble in water
- High refraction index and most of them are optically active.
- Volatile oils are colourless liquids, but when exposed to air and direct sunlight these become darker due to oxidation.
- Terpenoids are regarded as derivative of polymers of isoprene (C_sH_o)
- Terpenoid heat CH₂=C(CH₂)CH=CH₂ (Isoprene or 2- methyl-1,3 butadiene)

CLASSIFICATION OF VOLATILE OILS

Volatile oils are classified on the basis of functional groups present

GROUPS	DRUGS
Hydrocarbons	Turpentine oil
Alcohol	Peppermint oil, Pudina, Sandalwood oil, etc.
Aldehydes	Cymbopogon sp., Lemongrass oil, Cinnamon, Cassia, and Saffron
Ketones	Camphor, Caraway and Dill, Jatamansi, Fennel, etc.
Phenols	Clove, Ajowan, Tulsi, etc.
Phenolic ethers	Nutmeg, Calamus, etc.
Oxides	Eucalyptus, Cardamom, and Chenopodium oil
Esters	Valerian, Rosemary oil, Garlic, Gaultheria oil, etc.

EXTRACTION OF VOLATILE OILS

Volatile oils are prepared by means of several techniques and those techniques are discussed below:

- Extraction by Hydrodistillation: Herbal drugs
- Steam distillation
- Extraction by Scarification

Preparation of oil of lemon, oil of orange, and oil of bergamot.

The two principal methods of **scarification** are the **sponge** and the **ecuelle method**.

• Rheumatic ailments

Adulteration: -

- Spanish eucalyptus oil, camphor
- Oil, and turpentine fractions is common

GAULTHERIAOIL

Synonyms: - Canada tea, Checker berry, Wintergreen oil

Biological Source: - Obtained by the distillation of dried leaves of *Gaultheria procumbens*

Family: - Ericaceae

Chemical Constituents: -

- 99% methyl salicylate
- Water gaultherase

Other components -> like Gaultherilene and an aldehyde or ketone, a secondary alcohol and an ester

• Gaultherin Water gaultherase Methyl salicylate (counter irritant)

Uses: -

- Used as tonic, stimulant, antiseptic, astringent, diuretic, emmenagogue, aromatic
- Useful as a diuretic, it stimulate stomach, heart, and respiration
- In chronic inflammatory rheumatism, rheumatic fever, skin diseases, sciatica
- For dropsy, gonorrhea, stomach trouble, bladder troubles, and obstruction in the bowels

VALERIAN

Synonyms: - Valeriana rhizome

Biological Source: - Dried roots and rhizomes of Valeriana wallichi

Family: - Valerianaceae

Chemical Constituents: -

- Valerianic, formic, and acetic acids
- Alcohol → Borneol and pinene

Uses: -

- Treatment of insomnia, hysteria, blood pressure
- As an anticonvulsant in the treatment of epilepsy
- Antitumor activity
- As aromatic, stimulant, nervine, emmenagogue, anodyne, and antispasmodic
- Promote menstruation when taken hot
- Useful in colic, low fevers, to break up colds and relieves palpitation of the heart

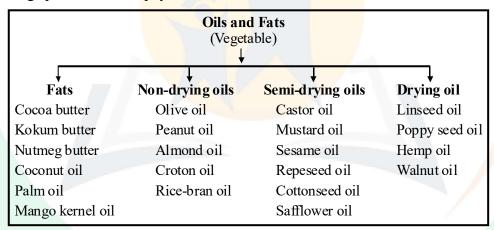
MISCILLANEOUS

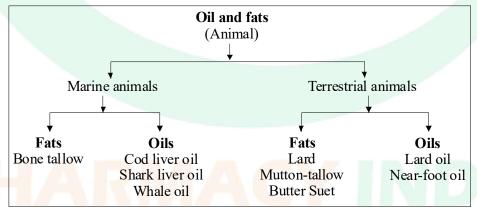
Monoterpenoid

PALMAROSA OIL

Synonym: - Rosha oil, Geranium oil

Biological source: - Obtained from leaves and tops of *Cymbopogan martini*


LIPIDS


INTRODUCTION

- These are the reserve food materials of plants and animals.
- Those, which are lipid at 15.5c to 16.5c are called as fixed oils
- They possess following properties: Fixed oils are thick, viscous, yellow coloured liquids with characteristic odour.
- They are non-volatile and cannot be distilled.
- They turn rancid on storage due to free acidity.

CLASSIFICATION OF FIXED OILS

• Depending upon sources and physical characteristics, fixed oils fats can be classified as

A lipid is a macro biomolecule that is soluble in nonpolar solvents. Non-polar solvents are typically hydrocarbons used to dissolve other naturally occurring hydrocarbon lipid molecules that do not (or do not easily) dissolve in water, including fatty acids, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E, and K), monoglycerides, diglycerides, triglycerides, and phospholipids.

Ginger	Adrak,	dried rhizomes of the Zingiber officinale (Zingiberaceae)	Zingiberene, gingerol, shagoal, gingediols	antiemetic, positive inotropic, spasmolytic, aromatic stimulant, carminative, condiment, flavouring agent
Guggul	Scented Bdellium, Gumgugul, Salai gogil.	obtained by incision of the bark of Commiphora mukul (Burseraceae)	guggulsterols I to VI, β-sitosterol, cholesterol, Z-and E-guggulsterone	inhibits platelet aggregation, increase thermogenesis, hypolipidemic, astringent, aritirheumatic, antiseptic, expectorant, aphrodisiac, demulcent, emmenagogue
Ipomoea	Radix ipomoeae	dried tuberous roots of Ipomoea orizabensis (Convolvulaçãe)	Jalapin, jalapinolic acid, ipurolic acid, convolvullinic acid	strong cathartic
Jalap	Radix jalapae, Jalap root, Vera cruz	dried tuberous roots or tubercles of <i>Ipomoea</i> purga (Convolvulaceae)	Jalapin-ether sol. (scammonin), Convolvulin (ether insoluble)	hydragogue cathartic, laxative, purgative
Kaladana	Mirchi, Krishnabija	dried ripe seeds of Ipomoea hederacea (Convolvulaceae)	Lysergol, hederaceterpenol, hederaceteriol, hederaterpenoside , β-sitosterol glucopyranoside, chanoclavine	purgative
Male fern	Filix Mass, Rhizoma Filicis Maris	dried rhizomes and its surrounding frond bases of <i>Dryopteris filix-mas</i> (Polypodiaceae)	Filicin, butyryl phloroglucinol, aspidinol, acylfilicinic acids	Antihelmintic
Myrrh	Gum-resin Myrrh, Gum Myrrh, Arabian or Somali Myrrh	obtained from the stem of Commiphora molmol or C. abyssinica (Burscraceae)	α, β, & γ, Commiphoric acids and α, β, Heerabomyrrholi c acid, Eugenol	Antiseptic, stimulant, Carminative, astriengent

Note: - Hydrolysable and condensed tannins both give the positive goldbeater's test, whereas pseudotannins show very little colour or negative test.

2. Phenazone Test:

5ml of aqueous solution of tannin containing drug + 0.5g sodium acid phosphate \rightarrow Warm the solution \rightarrow cool filter \rightarrow Add 2% phenazone solution to the filtrate \rightarrow Tannins are precipitated as bulky, coloured precipitate.

3. Gelatin Test:

1% gelatine solution + little 10% sodium chloride + 1% solution of tannin → tannins cause precipitation of gelatine from solution.

4. Test for Catechin (Matchstick Test):

Dip a matchstick in the dilute extract of the drug \rightarrow Dry; moisten it with concentrated HCl \rightarrow Warm it near a flame \rightarrow Catechin in the presence of acid produces phloroglucinol which stains the lignified wood pink or red.

5. Test for chlorogenic acid:

Dilute solution of chlorogenic acid containing extract + aqueous ammonia → Exposed to air → Slowly turns green indicating the presence of chlorogenic acid.

6. Vanillin-hydrochloric acid test:

Drug shows pink or red colour \rightarrow In mixture of vanillin: alcohol: dilute HCl in the ratio 1:10:10.

Note: - The reaction produces phloroglucinol which along with vanillin gives pink or red colour.

HYDROLYSABLE TANNINS

DRUG	SYNONYM	BIOLOGICAL	ACTIVE	USES
NAME	SYNONYM	SOURCE	CONSTITUENTS	USES
Myrobalan	Chebulic	dried fruits of	chebulinic acid,	Chronic ulcers,
	myrobalan,	Terminalia	chebulagic acid,	Wounds, piles,
	harde,	chebula	gallic acid	stomachic,
	haritaki	(Combretaceae)		purgative,
				ingredient of
				Triphala
Bahera	baheda,	dried ripe fruits	gallic acid, ellagic	Astringent,
	bibhitak	of the plant	acid, phyllemblin	Dyspepsia,
		Terminalia		diarrhoea,
		belerica		constituent of
		(Combretaceae) tr		triphala, demulcent,
				purgative
Arjuna	Arjun bark,	dried stem bark	(+) catechol, (+)	Diuretic, astringent,
	arjun	of the plant	gallocatechol,	hypotensive
		known as	epicatechol,	
		Terminalia	epigallocatechol,	
		arjuna	ellgic acid	
		(Combretaceae)		

TESTS FOR CARBOHYDRATES

S. NO.	TEST NAME	PROCEDURE	OBSERVATION
1.	Reduction of Fehling's Solution	Solution of carbohydrate + equal quantity of Fehling's solutions A and B → after heating	Brick red precipitate is obtained
2.	Molisch Test	Solution of carbohydrate + α-naphthol + concentrated sulphuric acid	Gives purple colour
3.	Resorcinol Test for Ketones (Selivanoff's Test)	A crystal of resorcinol + carbohydrate solution → warmed on a water bath with an equal volume of concentrated hydrochloric acid	Rose colour is produced if a ketone is present (e.g. fructose, honey or hydrolysed inulin).
4.	Test for Pentoses	Heat a solution of the substance in a test tube + equal volume of hydrochloric acid containing a little phloroglucinol	Formation of a red colour indicates pentoses
5.	Keller-Kiliani Test for Deoxysugars	A Deoxysugar (found in cardiac glycosides) + acetic acid + trace of ferric chloride → transferred to the surface of concentrated sulphuric acid	At the junction of the liquids a reddish-brown colour is produced which gradually becomes blue.
6.	Furfural Test	A carbohydrate sample is heated in a test tube + a drop of syrupy phosphoric acid to convert it into furfural → disk of filter paper moistened with a drop of 10% solution of aniline in 10% acetic acid → placed over the mouth of the test → tube bottom of the test tube is heated for 3060s	

ACACIA GUM

Synonyms: - Egyptian thorn, Gum Senegal, Kher, Sudan gum arabic, Somali gum, Yellow thorn, Indian Gum and Gum Arabic.

Biological Source: - Dried gummy exudation obtained from the stems and branches of

- Acacia Senegal (African species of Acacia)
- Acacia arabica (Indian)

Family: - Leguminosae

Chemical constituents: -

hydrolysis

Acacia consists principally of arabin, (complex mixture of calcium, magnesium and potassium salts of Arabic acid)

• Arabic acid hydrolysis L-arabinose, D-galactose, D-glucuronic acid and L-rhamnose 1

Chemical Tests: -

1. Lead acetate test:

Aqueous solution of acacia + lead acetate solution \rightarrow Yields a heavy white precipitate.

CARBON SOURCE

- It is essential to supplement the tissue culture media with an utilizable source of carbon to the culture media.
- The most commonly used carbon source is sucrose at a concentration of 2–5%. Glucose and fructose are also known to be used for good growth of some tissues.

PLANT GROWTH REGULATORS

- Plant growth regulators are the critical media components in determining the developmental pathway of the plant cells.
- The plant growth regulators used most commonly are plant hormones or their synthetic analogues.
- Classes of plant growth regulators: There are five main classes of plant growth regulator used in plant cell culture, namely:
 - (1) Auxins
 - (2) Cytokinins
 - (3) Gibberellins
 - (4) Abscisic acid
 - (5) Ethylene
- Auxins: Auxins promote both cell division and cell growth.

ABBREVIATION/NAME	CHEMICAL NAME
2,4-D	2,4-dichlorophenoxyacetic acid
2,4,5-T	2,4,5-trichlorophenoxyacetic acid
Dicamba	2-methoxy-3,6-dichlorobenzoic acid
IAA	Indole-3-acetic acid
IBA	Indole-3-butyric acid
MCPA	2-methyl-4-chlorophenoxyacetic acid
NAA	1-naphthylacetic acid
NOA	2-naphthyloxyacetic acid
Picloram	4-amino-2,5,6-trichloropicolinic acid

• Cytokinins: Cytokinins promote cell division.

ABBREVIATION/NAME	CHEMICAL NAME
BAPa	6-benzylaminopurine
2iP (IPA)b	[N6-(2-isopentyl)adenine]
Kinetina	6-furfurylaminopurine
Thidiazuronc	1-phenyl-3-(1,2,3-thiadiazol-5-yl)urea
Zeatinb	4-hydroxy-3-methyl-trans-2 butenylaminopurine

- Gibberellins: They are involved in regulating cell elongation, and are agronomically important in determining plant height and fruit set. Only a few of the gibberellins are used in plant tissue culture media, GA3 being the most common.
- Abscisic acid: Abscisic acid (ABA) inhibits cell division. It is most commonly used in plant tissue culture to promote distinct developmental pathways such as somatic embryogenesis.
- Ethylene: Ethylene is a gaseous, naturally occurring, plant growth regulator most commonly associated with controlling fruit ripening in climacteric fruits.

FIBRES

INTRODUCTION

Fibres may be defined as any hair-like raw material directly obtainable from an animal, vegetable, or mineral source and convertible into nonwoven fabrics such as felt or paper or, after spinning into yarns, into woven cloth. A natural fibre may be further defined as an agglomeration of cells in which the diameter is negligible in comparison with the length.

CLASSIFICATION AND PROPERTIES

Natural fibres can be classified according to their origin.

- 1. Vegetable, or cellulose-base Cotton, Fax, and Jute.
- 2. Animal, or protein-base, fibres Wool, Mohair, and Silk.
- 3. Regenerated and synthetic fibres Nylon, Terylene, Orlon, Viscose, Alginate fibres, etc.

VEGETABLE FIBRES

COTTON

Synonyms: - Raw cotton, Purified cotton, Absorbent cotton.

Biological Source: - Epidermal trichomes of the seeds of cultivated species of the *Gossypium herbaceum* and other species of *Gossypium (G. hirsutum, G. barbadense*)

Family: - Malvaceae

Description: -

- Colour White
- Odour Odourless
- Taste Tasteless
- Shape These are fine filaments like that of hair, which are soft and unicellular.
- Size 2.2–4.6 cm in length and 20–35 micron in diameter

Chemical Constituents: -

- 90% of cellulose
- Purified cotton has almost cellulose and 6–7% of moisture

Chemical Tests: -

- 1. On ignition, cotton burns with a flame, gives very little odour or fumes, does not produce a bead, and leaves a small white ash; distinction from acetate rayon, alginate yarn, wool, silk, and nylon.
- 2. Dried cotton is moistened with N/50 iodine and 80% w/w sulphuric acid is added. A blue colour is produced; distinction from acetate rayon, alginate yarn, jute, hemp, wool, silk, and nylon.

DRUGS OF MINERAL ORIGIN

INTRODUCTION

- The substances of mineral origin have been used for various pharmaceutical purposes ranging from therapeutic agents to nutritional supplements to pharmaceutical excipient.
- These inorganic substances are found as mineral deposits of different types such as terrestrial deposits or fossil deposition of geological origin in ocean and seabeds.
- The natural ores or minerals are collected by mining in open quarries, and the product is further purified for various pharmaceutical uses.

MINERAL	OTHER NAME	SOURCE	USES	
Kaolin	Hydrated aluminium silicate	Feldspar deposits	In gastric affection	
Asbestos	Silicates of calcium- magnesium	Hornblende	For bacterial filter	
Talc	Hydrated magnesium silicate	Sleatite/soap stone	Filtration	
Bentonite	Hydrated aluminium silicate	Mineral deposits	Emulsion, cosmetics	
Fueller's Earth	Aluminium magnesium silicate	Siliceous earth	Dusting powder	
Prepared chalk	Calcium carbonate	Calcarious remains of algae	Antacid	
Kieselguhr	Aluminium silicate	Fossil diatoms	Filtration aid	
Calamine	Zinc oxide	Hemimorphites	Cosmetics	
Shilajit	Herbo-mineral	Iron rich rocks	Aphrodisiac	
Mica	Alumino-silicate	Metamorphic rocks	Manufacturing of furnaces, transformers, transmitters etc.	

KAOLIN

Synonyms: - China clay.

Identification: - Heat kaolin on charcoal black with cobalt nitrate, it forms blue mass due to alumina.

BENTONITE

Synonyms: - Whilkinite. **Identification Test:** -

- 1. Bentonite is mounted in cresol → Observed on dark field polarized light, it shines brightly.
- 2. Bentonite acquires permanent red stain \rightarrow When treated with 1% solution of safranin in 70% alcohol.

RAPID REVISION

ALKALOIDS

S. NO.	CLASS	CTDICTUDE	EXAMPLE
		STRUCTURE	
1.	Pyridine – Piperidine alkaloids		Tobacco, Areca, Lobelia
2.	Tropane alkaloids	2	Belladona, Datura, Hyoscyamus, Stramonium, Dubosia, Coca leaves, Ashwgandha
3.	Quinoline alkaloids		Cinchona, Camptotheca
4.	Isoquinoline alkaloids		Opium, Ipecac, Curare, Berberis
5.	Indole alkaloids	I Z	Ergot, Nux vomica, Rauwolfia, Catharanthus, Physostigma
6.	Imidazole alkaloids	HZ	Pilocarpus
7.	Steroidal alkaloids	HO HO	Veratrum, Kurchi
8.	Alkaloidal amine	CH-CH ₂ -CH ₂ -NH ₂	Ephedra, Colchicum
9.	Glycoalkaloids	-	Solanum

STARCH GRAINS

S.NO	CHARACTERISTICS	MAIZE	RICE	WHEAT	POTATO
1.	Colour	White	White	Faint grey	Yellowish
					tint
2.	Shape	Simple	Simple or	Mostly	Flattened
		grains,	compound	simple (large	ovoid or
		angular,	grains (2–150	and small)	subspheri
		hilum	components),	grains, faint	cal, well-
		central,	polyhedral with	striations,	marked
		rarely	sharp angles	Hilum	striations,
		compound	K	appears as	hilum
		grains		line	eccentric.
3.	Size i <mark>n μm</mark>	5–30	2–10	Small 2–9	10-100
				Large 10–45	
4.	pH	Neutral	Alkaline	Acidic	Acidic
5.	Moisture content(%v/w)	13	13	13	20
6.	Ash content(%w/w)	0.3	0.6	0.3	0.3

CALCIUM OXALATE CRYSTALS

S.NO.	TYPES OF CA-OXALATE CRYSTALS	EXAMPLES
1.	Microsphenoidal or sandy	Cinchona (Small prism), Belladonna (Monoclinic
	crystals	microsphenoids, Hyoscyamus (Tetragonal)
2.	Single acicular crystals	Cinnamon, gentian
3.	Prismsmatic crystals	Quassia, hyoscyamus, senna, rauwolfia, cascara
4.	Rosettes crystals	Stramonium, senna, cascara, rhubarb
5.	Bundles of acicular crystals	Squill, ipecacuanha
6.	Needle shaped crystals	Allium cepa, Hyoscyamus species, Henbane,
		Tradescantia discolor (Spider wort), Begonia
		species.

PHARMACY INDIA