

1.The term 'Pharmacognosy' was first introduced by

- (a) Pelletier
- (b) Sertuerner
- (c) Schmidt
- (d) Seydler

1.The term 'Pharmacognosy' was first introduced by

- (a) Pelletier
- (b) Sertuerner(c) Schmidt
- (d) Seydler

Pharmacognosy Term –

First used by Johann Adam Schmidt in his manuscript Lehrbuch der Materia Medica in 1811.

First coined-

 C.A. Seydler (Germen scientist) by in 1815 in the title of his work
 "Analecta Pharmacognostica".

2. Which of the following traditional medicines is a semisolid dosage form (a) Avaleha (b) Asava (c) Vatika (d) Sattva

2. Which of the following traditional medicines is a semisolid dosage form (a) Avaleha (b) Asava (c) Vatika (d) Sattva

Classification of Ayurvedic Dosage Form

Classification	Dosage Forms
Solid Dosage Form	Pills, Gutika, Vatika
Semi-solid Dosage Form	Avleha, Paka, Lepa, Ghrta
Liquid Dosage Form	Asava, Arista, Arka, Taila, Dravaka
Powder Dosage Form	Bhyasma, Satva, Mandura, Pisti, Parpati, Lavana, Kshara, Churna

3. Drug which is NOT belongs to fruit class (a) Ergot (b) Fennel (c) Coriander (d) Dill

3. Drug which is NOT belongs to fruit class (a) Ergot (b) Fennel (c) Coriander (d) Dill

Morphological Classification

Here, the crude drugs are grouped according to the part of the plant or animal represented into organized and unorganized drugs.

Some of the examples of crude drugs under this type of classification are as:

- **1. Seeds Isabgol, Castor**
- 2. Leaves Senna, Eucalyptus,
- 3. Bark Cinchona, Cinnamon
- 4. Woods Sandalwood, Quassia
- 5. Roots Rauwolfia, Jalap
- 6. Rhizomes Turmeric, Ginger

- 7. Flowers Clove, Saffron
- 8. Fruits Fennel, Coriander
- 9. Entire drugs- Ephedra, Belladonna
- **10. Dried latex Opium, Papain**
- **11. Dried extracts Gelatin, Agar**
- **12. Dried juices Aloes**

4. Liquorice, Ipecacuanha and Vasaka possess similar pharmacological effect to that of (a) Bronchodilator (b) Antitussive (c) Expectorant (d) Laxative

4. Liquorice, Ipecacuanha and Vasaka possess similar pharmacological effect to that of (a) Bronchodilator (b) Antitussive (c) Expectorant (d) Laxative

Drugs Acting on Respiratory System

- Expectorants Liquorice, Vasaka, Ipecac
- Antitussives Opium (Codeine , Noscapine)
- Bronchodilators Ephedra, Tea (Theophylline)

Drugs Acting on Cardio-vascular System (CVS)

- Cardiotonics Digitalis, Squill
- Cardiac depressant Cinchona (quinidine)
- Vasoconstrictors Ergot (ergotamine), Ephdra
- Antihypertensive Rauwolfia

5. The glandular trichome which contains active phytoconstituents of the **plant** is (a) Belladonna (b) Cannabis (c) Datura (d) Ergot

5. The glandular trichome which contains active phytoconstituents of the **plant** is (a) Belladonna (b) Cannabis (c) Datura (d) Ergot

Trichomes

Types of	Subtypes		Examples
Trichomes			
	Unicellular Trichomes	Warty trichomes	Damiana, Senna
		longitudinally striated trichomes	Lobelia
Covering		flattened and twisted trichomes	Cotton
trichomes		Lignified trichomes	Nux vomica,
			strophanthus
		conical trichomes	Теа
		curved, conical trichomes	Cannabis
		stellate trichomes	Deutezia scabra

Cannabis	Ganja	Cannabis sativa	Resin,	Rheumatiod
		(Cannabinaceae)	tetrahydro-	arthritis
			cannabinol	

6. Who is regarded as the father of surgery in ancient India (a) Sushrutha (b) Charaka (c) Vasavadatta (d) Dhanvantari

6. Who is regarded as the father of surgery in ancient India (a) Sushrutha (b) Charaka (c) Vasavadatta (d) Dhanvantari

- Charaka Samhita- made 50 groups of 10 herbs for illness, according to physician's need.
- Sushrutha Samhita- arranged 760 herbs in 7 distinct sets based on their common properties. "Father of Indian Medicine".
- The oldest written book- Rig ved and Atharva ved represent medical knowledge and practices that formed the basis of the Ayurveda system.

7. Dragendorff's reagent is employed for the identification of (a) Carbohydrates (b) Alkaloids (c) Flavonoids (d) Proteins

7. Dragendorff's reagent is employed for the identification of (a) Carbohydrates (b) Alkaloids (c) Flavonoids (d) Proteins

Chemical Test for Alkaloids

S. No	Reagent	Observation
1.	Mayer's Reagent (Potassium mercuric iodide solution)	Creamy precipitate
2.	Wagner's reagent (Potassium triiodide solution)	Reddish brown precipitate
3.	Dragendroff's reagent (Potassium bismuth iodide solution)	Reddish brown precipitate
4.	Hager's reagent (Picric acid)	Yellow precipitate
5.	<mark>Sonnenschein's reagent</mark> (Phosphomolybdic acid)	Precipitate
6.	Scheibler's reagent (Phosphotungstic acid)	Precipitate

8. Chemically Mayer's reagent is (a) Potassium mercuric iodide (b) Potassium bismuth iodide (c) Iodine solution (d) Picric acid

8. Chemically Mayer's reagent is
(a) Potassium mercuric iodide
(b) Potassium bismuth iodide
(c) Iodine solution
(d) Picric acid

Chemical Test for Alkaloids

S. No	Reagent	Observation
1.	Mayer's Reagent (Potassium mercuric iodide solution)	Creamy precipitate
2.	Wagner's reagent (Potassium triiodide solution)	Reddish brown precipitate
3.	Dragendroff's reagent (Potassium bismuth iodide solution)	Reddish brown precipitate
4.	Hager's reagent (Picric acid)	Yellow precipitate
5.	<mark>Sonnenschein's reagent</mark> (Phosphomolybdic acid)	Precipitate
6.	Scheibler's reagent (Phosphotungstic acid)	Precipitate

9. Vitali-Morin test is used to identify
(a) Indole alkaloids
(b) Isoquinoline alkaloids
(c) Tropane alkaloids
(d) Purine alkaloids

9. Vitali-Morin test is used to identify
(a) Indole alkaloids
(b) Isoquinoline alkaloids
(c) Tropane alkaloids
(d) Purine alkaloids

Chemical test

Vitali-morin Test Tropane alkaloids + fuming nitric acid Evaporate to dry at 100 °C + 3% KOH in methanol Voilet Colours appearance (due to tropane derivatives)

10. Belladonna herbs belongs to the chemical class of (a) Indole alkaloids (b) Isoquinoline alkaloids (c) Tropane alkaloids (d) Quinazoline alkaloids

10. Belladonna herbs belongs to the chemical class of (a) Indole alkaloids (b) Isoquinoline alkaloids (c) Tropane alkaloids (d) Quinazoline alkaloids

S. No.	Class	Structure	Example
1.	Pyridine –	\land	Tobacco,
	Piperidine		Areca,
	alkaloids	N N H	Lobelia
2.	Tropane		Belladona,
	alkaloids		Datura,
			Hyoscyamus, Stramonium,
			Dubosia,
			Coca leaves
3.	Quinoline		Cinchona,
	alkaloids	N	Camptotheca

11. Vincristine is a type of alkaloid
(a) Indole
(b) Phenanthrene
(c) Benzyl isoquinoline
(d) Triterpenoid

11. Vincristine is a type of alkaloid
(a) Indole
(b) Phenanthrene
(c) Benzyl isoquinoline
(d) Triterpenoid

	Opium,
	Ipecac,
	Curare,
	Berberis
	Sanguniria
	Ergot,
	Nux vomica,
	Rauwolfia,
	Vinca
NI	Catharanthus, Physostigma
	Pilocarpus
N H	

12. The composition of Froehde's reagent is

(a) Ammonium molybdate + Sulphuric acid
(b) Potassium iodide + Sulphuric acid
(c) Bismuth iodide + Sulphuric acid
(d) Ferric chloride + Sulphuric acid

12. The composition of Froehde's reagent is

(a) Ammonium molybdate + Sulphuric acid
(b) Potassium iodide + Sulphuric acid
(c) Bismuth iodide + Sulphuric acid
(d) Ferric chloride + Sulphuric acid

Froehde's Reagent

The Froehde reagent is used as a simple spot-test to presumptively identify alkaloids, especially opioids, as well as other compounds. It is composed of a mixture of molybdic acid or a molybdate salt dissolved in hot, concentrated sulfuric acid, which is then dripped onto the substance being tested.

13. Ergot contains which type of Alkaloids (a) Indole (b) Modified diterpenes (c) Purine (d) Isoquinoline

13. Ergot contains which type of Alkaloids (a) Indole (b) Modified diterpenes (c) Purine (d) Isoquinoline

	Opium,
	Ipecac,
	Curare,
	Berberis
	Sanguniria
	Ergot,
	Nux vomica,
	Rauwolfia,
	Vinca
NI	Catharanthus, Physostigma
	Pilocarpus
N H	

14. Which is the right reagent for of Ergot alkaloids

(a) Van Urk
(b) Fehling I and II
(c) Iron-III-chloride identification
(d) Phloroglucinol in hydrochloric acid

14. Which is the right reagent for of Ergot alkaloids (a) Van Urk (b) Fehling I and II (c) Iron-III-chloride identification (d) Phloroglucinol in hydrochloric acid

<u>Chemical Test for Ergot</u>

(1) Van-Urk's Test –

Ergot powder + p-dimethyl aminobezaldehyde -----> Blue Colour

15. Glycoside present in Nux vomica
(a) Strychnine
(b) Loganin
(c) Ecgonine
(d) Quinovin

15. Glycoside present in Nux vomica
(a) Strychnine
(b) Loganin
(c) Ecgonine
(d) Quinovin

Chemical constituents of Nux Vomica

- Seed contain 1.5 to 5% bitter indole alkaloids Chief constituents are Strychnine - More active, less bitter Brucine - Less active, more bitter
- Seed also contain Chlorogenic acid and glycoside loganin

16. What is synonym of rauwolfia
(a) Henbane
(b) Deadly nightshade leaf
(c) Green hellebore
(d) Indian snake root

16. What is synonym of rauwolfia
(a) Henbane
(b) Deadly nightshade leaf
(c) Green hellebore
(d) Indian snake root

RAUWOLFIA

Synonym: Chhotachand, Sarpgandha. Biological source: Rauwolfia is obtained from dried roots and rhizomes of plant Rauwolfia serpentina Family: Apocynaceae. Microscopy:

- T.S section of root shows externally by stratified cork with 2-7 layers of small cells that is followed by phelloderm.
- Both bark and wood contains abundent starch.
- Xylem is entirely lignified.
- Sclerenchyma is absent.
- Tetrastichous arrangement present.

17. Which of the following plant is source of anticancer drug vinblastine (a) Madagascar Periwinkle (b) Cinchona officinalis (c) Emblica officinalis (d) Rauwolfia

17. Which of the following plant is source of anticancer drug vinblastine (a) Madagascar Periwinkle (b) Cinchona officinalis (c) Emblica officinalis (d) Rauwolfia

Synonym: Periwinkle, Sadabahar Biological source: Vinca is obtained from dried whole plant of Catharanthus roseus or Vinca rosea Family: Apocynaceae Microscopy:

18.Morphine is present in(a)Atropa belladonna
(b) Ricinus Communis
(c) Papaver somniferum
(d) Cephaelis ipecacuanha

18.Morphine is present in(a)Atropa belladonna
(b) Ricinus Communis
(c) Papaver somniferum
(d) Cephaelis ipecacuanha

DRUG	SYNONYM	BIOLOGICAL SOURCE	FAMILY	CHEMICAL CONSTITUENTS	USES
OPIUM	Afim	obtained from dried latex obtained by incision of the unripe capsule of Papaver somniferum	Papaveraceae	A. Benzylisoquinoli ne Narceine, Papaverine, Papaverine, Narcotine (Noscapine B. Phenanthrene ring Morphine, Codeine Thebaine	 Analgesic Sedative & Hypnotic Cough Suppresant

19. Quinine is obtained from
(a) Cinnamomum
(b) Cinchona
(c) Andrographis
(d) Strychnus

19. Quinine is obtained from
(a) Cinnamomum
(b) Cinchona
(c) Andrographis
(d) Strychnus

DRUG	SYNONYM	BIOLOGICAL SOURCE	FAMILY		CHEMICAL CONSTITUENTS	USES
CINCHONA	Jesuit's bark, Peruvian bark	obtained from the dried bark of cultivated tree of <i>Cinchona</i> <i>calisaya,</i> <i>Cinchona</i> <i>succirubra,</i> <i>Cinchona</i> <i>officinalis,</i> <i>Cinchona</i> <i>ledgeriana</i>	Rubiaceae	•	Main alkaloids are Quinine & Quinidine and their respective 6- demethoxy derivative i.e. Cinchonidine, Cinchonine	 Antimalarial Arrhythmias

20. Pilocarpine is an alkaloid containing nucleus (a) Pyrazole (b) Imidazole (c) Oxazole (d) Pyrrole

20. Pilocarpine is an alkaloid containing nucleus (a) Pyrazole (b) Imidazole (c) Oxazole (d) Pyrrole

	Opium,
	Ipecac,
	Curare,
	Berberis
	Sanguniria
	Ergot,
	Nux vomica,
	Rauwolfia,
	Vinca
NI	Catharanthus, Physostigma
	Pilocarpus
N H	

21. What ring is present in Ashwagandha
(a) Terpenoid alkaloids
(b) Terpenoid glycoside
(c) Steroidal lactone
(d) Steroidal glycoside

21. What ring is present in Ashwagandha
(a) Terpenoid alkaloids
(b) Terpenoid glycoside
(c) Steroidal lactone
(d) Steroidal glycoside

Steroidal alkaloids	H H	Veratrum,
ainaioius	H H H H H	Kurchi
		Ashwagnadha
Alkaloidal	CH-CH ₂ -CH ₂ -NH ₂	Ephedra,
amine		Colchicum
Glycoalkaloids	_	Solanum
Purine		Tea,
alkaloids		coffee,
	N N	Kola,
		Cocoa

22. Hog weed is the synonym of
(a) Sutmeg
(b) Shatavari
(c) Gymnema
(d) Punarnava

22. Hog weed is the synonym of
(a) Sutmeg
(b) Shatavari
(c) Gymnema
(d) Punarnava

DRUG	SYNONYM	BIOLOGICAL SOURCE	FAMILY	CHEMICAL CONSTITUENTS	USES
Punarnav	Hog	Dried herb of	Nictagin	• Punernavoside,	• Jaundice,
a (Rakta-	weed	Boerhaavia	aceae	boervinone	diuretic
punarnav		diffuse			
a)					

23. Which of the following test is used to detection of glycosides (a) Benedict's test (b) Borntrager's reagent test (c) Hager's Reagent test (d) Glucose tolerance test

23. Which of the following test is used to detection of glycosides (a) Benedict's test (b) Borntrager's reagent test (c) Hager's Reagent test (d) Glucose tolerance test

CHEMICAL TEST OF GLYCOSIDES

S. NO.	TEST NAME		PROCEDURE	OBSERVATION
A. Cher	nical Tests for Anth			
1.	Borntrager's test	1	gm of drug + 5–10 ml of dilute	Formation of pink or
		HCl→	Boil on water bath for 10 min and	red colour in
		filter	Filtrate was extracted with CCl4/	ammonical layer is
		benz	$xene \rightarrow$ Then add equal amount of	due to presence of
		amm	onia solution to filtrate and shake	anthraquinone
				moiety
2.	Modified	1 gn	n of drug + 5 ml dilute HCl + 5 ml	Formation of pink to
	borntrager's test	ferri	c Chloride (5% w/v)→Boil for 10	red colour is due to
			min on water bath, cool and	presence of
		filt	er \rightarrow Filtrate was extracted with	anthraquinone
		carbon tetrachloride or benzene \rightarrow Then		moiety
		add e	qual volume of ammonia solution	

24. When Klunge's test was conducted with a sample of aloes, a wine-red color was ARB obtained. The sample may be (a) Socotrine aloes (b) Zanzibar aloes (c) Curacao aloes (d) Zanzibar aloes

24. When Klunge's test was conducted with a sample of aloes, a wine-red color was ARB obtained. The sample may be (a) Socotrine aloes (b) Zanzibar aloes (c) Curacao aloes (d) Zanzibar aloes

Cupraloin Test (Klung's Isobarbaloin)

1ml aloe solution + 5 ml water + 1 drop of copper sulphate solution

Bright yellow colour is produced

Then addition of 10 drops of saturated solution of sodium chloride changes to purple The colour persist if 15–20 drops of 90% alcohol is added

This test is positive for Curocao aloe, faint for Cape aloe and negative for Zanzibar and Socotrine aloes

25. The amount of barbaloin present in **Abe Vera is** (a) < 1%(b) 3.5-4%(c) 1-1.5% (d) 2-2.5%

25. The amount of barbaloin present in **Abe Vera is** (a) < 1%(b) 3.5-4% (c) 1-1.5% (d) 2-2.5%

Anthracene Glycosides

Name Of Drug	Biological Source	Active	Uses
And Synonym		Constituents	
Aloes (kumara)	Dried juice of leaves of	Barbaloin(3.5-	Purgative
	aloe Vera, Aloe	4%), aloe-	
	Barbadensis, Aloe ferox,	Emodin	
	Liliaceous		

26.Rhubarb belongs to the family
(a) Rhamnaceae
(b) Polygonaceae
(c) Rosaceae
(d) Combretaceae

26.Rhubarb belongs to the family
(a) Rhamnaceae
(b) Polygonaceae
(c) Rosaceae
(d) Combretaceae

Anthracene Glycosides

Name Of Drug	Biological Source	Active	Uses
And Synonym		Constituents	
Rhubarb	Dried rhizome to	Rhein, aloe	Purgative
(Rheum)	Rheum Palmatum,	Emodin	bitter
	Family - Polygonaceae		stomachic

27. _____ is the botanical source of Indian senna

(a) Dried leaflets of Cassia angustifolia
(b) Dried leaflets of Cassia acutifolia
(c) Dried leaflets of Cassia auriculata
(d) Dried leaflets of Cassia obovata

27. _____ is the botanical source of Indian senna (a) Dried leaflets of Cassia angustifolia

(a) Dried leaflets of Cassia angustitolia
(b) Dried leaflets of Cassia acutifolia
(c) Dried leaflets of Cassia auriculata
(d) Dried leaflets of Cassia obovata

Anthracene Glycosides

Name Of Drug	Biological Source	Active	Uses
And Synonym		Constituents	
Indian Senna	Dried leaflets of Cassia	Sennoside A and	Purgative
(Senna leaf)	angustifolia, Leguminosae	В	
Senna pods	Dried nearby ripe fruits of	Sennoside A and	Purgative
(Senna – fruit)	Cassia acutifolia,	В	
	Leguminosae		

28. Which test is specially used for localization of cardiac glycosides in the crude drug (a) Klunge test (b) Molisch's test (c) Baljet test (d) Mayer's test

28. Which test is specially used for localization of cardiac glycosides in the crude drug (a) Klunge test (b) Molisch's test (c) Baljet test (d) Mayer's test

D. Chemical Tests for Cardiac Glycosides

Keller-kiliani test Alcoholic extract of drug \rightarrow Add equal Reddish brown layer 1. volume of water and 0.5 ml of strong lead is formed, which acetate solution **> Then** shaked and turns bluish green **filtered** \rightarrow Filtrate was extracted with after standing due to equal volume of chloroform \rightarrow Chloroform presence of to digitoxose evaporated extract was dryness \rightarrow Residue was dissolved in 3 ml of glacial acetic acid followed by addition of few drops of FeCl3 solution \rightarrow The resultant solution was transferred to a test tube containing 2 ml of conc. H2SO4.

Alcoholic extract of drug \rightarrow Then equal Formation of pink Legal test 2. volume of water and 0.5 ml of strong lead colour in presence acetate solution was added \rightarrow Shaked and of glycosides or filtered \rightarrow Filtrate was extracted with equal aglycon moiety volume of chloroform \rightarrow The chloroform extract was evaporated to dryness \rightarrow The residue was dissolved in 2 ml of pyridine \rightarrow Then sodium nitropruside 2 ml was added followed by addition of NaOH solution to make alkaline

3	Baljet test	Thick section of leaf of digitalis	Forms yellow to orange colour
		or the part of drug containing	in presence of aglycones or
		cardiac glycoside \rightarrow Dipped in	glycosides
		sodium picrate solution	
4.	3,5-dinitro benzoic	Alcoholic solution of	Formation of pink colour
	acid test	drug→Few drops of NaOH +	indicates presence of cardiac
		2% solution of 3, 5-dinitro	glycosides
		benzoic acid was added	

29. Cardiac glycoside possess basic nucleus of

(a) Tropane
(b) Triterpene
(c) Quinoline
(d) Cyclopentanoperhydrophenanthrene

29. Cardiac glycoside possess basic nucleus of

(a) Tropane
(b) Triterpene
(c) Quinoline
(d) Cyclopentanoperhydrophenanthrene

- Cardiac glycosides are naturally occurring steroids that have a basic nucleus of cyclopentanoperhydrophenanthrene.
- This nucleus is made up of four fused rings of 17 carbons in a cis-trans-cis configuration, with an unsaturated lactone ring at C17.
- The sugar moiety (glycone portion) is attached to the nucleus through a hydroxyl group at C3.

30. Keller Kiliani test is specified for (a) Anthraquinone glycosides (b) Cardiac glycosides (c) Saponins (d) Flavonoids

30. Keller Kiliani test is specified for
(a) Anthraquinone glycosides
(b) Cardiac glycosides
(c) Saponins
(d) Flavonoids

D. Chemical Tests for Cardiac Glycosides

Keller-kiliani test Alcoholic extract of drug \rightarrow Add equal Reddish brown layer 1. volume of water and 0.5 ml of strong lead is formed, which acetate solution **> Then** shaked and turns bluish green **filtered** \rightarrow Filtrate was extracted with after standing due to equal volume of chloroform \rightarrow Chloroform presence of to digitoxose evaporated extract was dryness \rightarrow Residue was dissolved in 3 ml of glacial acetic acid followed by addition of few drops of FeCl3 solution \rightarrow The resultant solution was transferred to a test tube containing 2 ml of conc. H2SO4.

31. A detailed study on digitalis was carried out by the scientist (a) A. W. Eichler (b) Stass-Otto (c) William Withering (d) Johann Schmidt

31. A detailed study on digitalis was carried out by the scientist (a) A. W. Eichler (b) Stass-Otto (c) William Withering (d) Johann Schmidt

• William Withering (born March 17, 1741, Wellington, Shropshire, Eng.—died Oct. 6, 1799, Sparkbrook, Birmingham, Warwickshire) was an English physician best known for his use of extracts of foxglove (Digitalis purpurea) to treat dropsy (edema), a condition associated with heart failure and characterized by the accumulation of fluid in soft tissues. Withering's insights on the medical uses of foxglove proved crucial to modern understanding of heart failure, and today drugs containing the active compound, known as digitalis

32. Synonym for Indian squill is
(a) Yam
(b) Liquorice root
(c) Sea Onion
(d) Arrow poison

32. Synonym for Indian squill is
(a) Yam
(b) Liquorice root
(c) Sea Onion
(d) Arrow poison

Name Of Drug	Biological Source	Active	Uses
And Synonym		Constituents	
European	Dried sliced bulbs of	Scillaren A and	Cardioto
Squill (scilla)	Urginea maritima, Liliaceae	В	nic
Indian Squill	Dried sliced bulbs of	Scillaren A and	Cardioto
(Sea Onion)	Urginea martitima, Liliaceae	В	nic

33.An example of saponin glycoside is
(a) Glycyrrhiza
(b) Senna
(c) Digitalis
(d) Aloe

33.An example of saponin glycoside is
(a) Glycyrrhiza
(b) Senna
(c) Digitalis
(d) Aloe

3. Saponin Glycosides

Name Of Drug	Biological	Active	Uses
And Synonym	Source	Constituents	
1. Brahmi	Leaves and stems Bacopa moniera Scrophulariaceae	Bacosides A and B	Nervine tonic
2. Dioscorea (yam)	Dried Rhizomes of	Diosgenin (steroidal	Synthesis of medicinal
	Dioscorea deltoidea,	spogenin)	steroids
	Dioscoreaceae		
3. Ginserg (Panax)	Dried root of Panax	Ginsenosides &	Adaptogen,
	ginseng, Araliaceae	panaxosides (Triterpenoid	
		saponins)	
4. Gokhru (tribulus)	Dried fruits Tribulus	Steroidal sapogenins	Diuretic
	terrestris Zygophyllaceae		
5. Jalbrahmi (CENTELLA)	Dried fruits of Momordica	Asiatcoside	Nervine tonic
	charantia Cucurbitaceae		
6. Momordica (karela)	Dried fruits of Momordica	Charantia, Momordicin	Hypoglycemic
	charantia Cucurbitaceae		

Name Of Drug And	Biological Source	Active Constituents	Uses
Synonym			
7. Quillaia (Soap bark)	Dried inner bark of Quillaia saponaria Rosacea	Quillaia sapotoxin (triteroenoid saponin)	Reflex expectorant
8. Safed Musali	Peeled Tuberous roots of Chlorophytum borovillianum Liliaceae	Hicogenin	General tonic
9. Senega	Dried roots of Polygalasenega, Polygalaceae	Senegin, polygallic acid (triterpenoid saponin) Shatavrin I,II	Galactogogue
10. Shatavari (Shutmuli)	Dried roots and leaves Asparagus racemosus Liliaceae	Shatavarin I,II	Galactogogue
11. Yasti (glycyrrhiza)	Dried roots and stolon of glycyrrhiza glabra, Leguminosae	Glycyrrhizin (triterpenoid saponin), 18 – β – glycyrrhetinic acid	Expectorant, treatment of peptic ulcer

34. Haemolysis test is done for which glycoside (a) Saponin (b) Thiocyanate (c) Anthraquinone (d) Phenol

34. Haemolysis test is done for which glycoside (a) Saponin (b) Thiocyanate (c) Anthraquinone (d) Phenol

B. Cher	B. Chemical Tests for Saponin Glycosides				
1.	Haemolysis	A drop blood on slide + few drops of	RBC's becomes ruptured		
	test	aq. Saponin solution	in presence of saponins		
2.	Foam test	1 gm of drug + 10–20 ml of water \rightarrow	Formation of frothing		
		Shake for few minutes	which persists for 60–120		
			seconds in presence of		
			saponins		

35. Panaxoside is the constituent of
(a) Ginseng
(b) Brahmi
(c) Senega
(d) Gokhrzu

35. Panaxoside is the constituent of
(a) Ginseng
(b) Brahmi
(c) Senega
(d) Gokhrzu

Saponin Glycosides

Name Of Drug	Biological	Active	Uses
And Synonym	Source	Constituents	
Ginserg	Dried root of	Ginsenosides &	Adaptogen,
(Panax)	Panax ginseng,	panaxosides	
	Araliaceae	(Triterpenoid	
		saponins)	

36. Dioscin is an example of
(a) Triterpenoid
(b) Alkaloidal resin
(c) Steroidal saponin
(d) Mucilage

36. Dioscin is an example of
(a) Triterpenoid
(b) Alkaloidal resin
(c) Steroidal saponin
(d) Mucilage

Name Of Drug	Biological	Active	Uses
And Synonym	Source	Constituents	
Dioscorea	Dried Rhizomes	Diosgenin	Synthesis of
(yam)	of Dioscorea	(steroidal	medicinal
	deltoidea,	spogenin)	steroids
	Dioscoreaceae		

37. Quassia wood is adulterated with (a) Brucea antidysenterica (b) Cinnamomum zeylanicum (c) Cassia angustifolia (d) Glucose and Rhamnose

37. Quassia wood is adulterated with
(a) Brucea antidysenterica
(b) Cinnamomum zeylanicum
(c) Cassia angustifolia
(d) Glucose and Rhamnose

The picrosma excelsa species of quassia is adulterated by quassia amara and bruise antidysentrica.

38. An antidiabetic plant drug (a) Withania somnifera (b) Saraca indica (c) Urginea maritime (d) Gymnema sylvestre

38. An antidiabetic plant drug (a) Withania somnifera (b) Saraca indica (c) Urginea maritime (d) Gymnema sylvestre

Glycosidal Bitters and Miscellaneous Glycosides

Name Of Drug And	Biological Source	Active Constituents	Uses
Synonym			
Gudmar	Dried leaves of	Gymnemic acid	Anti-diabetic
(Gymnema)	Gymnema sylvestre		
	Asclepiadaceae		

39. Anti-sweetening agent in Gymnema Sylvester (a) Gymnemic acid (b) Hentriacontane (c) Pentatriacontane (d) Kinolin

39. Anti-sweetening agent in Gymnema Sylvester (a) Gymnemic acid (b) Hentriacontane (c) Pentatriacontane (d) Kinolin

Glycosidal Bitters and Miscellaneous Glycosides

Name Of Drug And	Biological Source	Active Constituents	Uses
Synonym			
Gudmar	Dried leaves of	Gymnemic acid	Anti-diabetic
(Gymnema)	Gymnema sylvestre		
	Asclepiadaceae		

40. Glycyrrhizin, a sweet principle of liquorice

(a) K and Mg salts of glycyrrhizinic acid(b) Na and Mg salts of glycyrrhizinic acid(c) K and Ca salts of glycyrrhizinic acid(d) Na and Ca salts of glycyrrhizinic acid

40. Glycyrrhizin, a sweet principle of liquorice

(a) K and Mg salts of glycyrrhizinic acid
(b) Na and Mg salts of glycyrrhizinic acid
(c) K and Ca salts of glycyrrhizinic acid
(d) Na and Ca salts of glycyrrhizinic acid

Name Of	Biological Source	Active Constituents	Uses
Drug And			
Synonym			
Yasti	Dried roots and stolon	Glycyrrhizin	Expectorant,
(glycyrrhiza)	of glycyrrhiza glabra,	(triterpenoid saponin),	treatment of
	Leguminosae	18 – β – glycyrrhetinic	peptic ulcer
		acid	
		Sweet principle - K and	
		Ca salts of glycyrrhizinic	
		acid	