

DOWNLOAD "PHARMACY INDIA" MOBILE APP

PHARMAC

Mobile Phone Par Click karein

DAILY UPDATES जुडि़ए PHARMACY INDIA के साथ.....

WHATSAPP & TELEGRAM SE JUDNE KE LIYE ICONS PAR CLICK KARE

Example of cationic emulsifying agent is
 (a) Polysorbate 80
 (b) Cetrimide
 (c) Sodium dodecanoate
 (d) Sorbitan monooleate

Example of cationic emulsifying agent is
 (a) Polysorbate 80
 (b) Cetrimide
 (c) Sodium dodecanoate
 (d) Sorbitan monooleate

✓ Types of surfactants

Types	Example
Anionic	Sodium lauryl sulphate(SLS), Triaton-X200,
	Sodium acetyl sulphate, Docusate
Cationic	Benzalkonium chloride, Cetyl trimethyl
	ammonium, Cetrimide
Non-ionic	Tween, Span, Myrj, Brij, Diethanolamine, PEG,
	Tween 80
Amphoteric	N- alkylamino acid, Lecithin, Betaines

2. Creams are
(a) Emulsions
(b) Suspensions
(c) Ointments
(d) Pastes

2. Creams are
(a) Emulsions
(b) Suspensions
(c) Ointments
(d) Pastes

Example of Emulsion

- **Oral Emulsion**
- **Cosmetics**

- Usually O/W type e.g. Castor oil, Cod liver oil
- O/W type (Vanishing Cream)
- W/O type (Cold Cream)
- **Parenteral Emulsion** Fat soluble vitamins A, D, E and Sex hormones
- **Diagnostic Emulsion** Radio-opaque emulsion for X-Ray

3. The complete separation of two phases in emulsion is called
(a) Creaming
(b) Sedimentation
(c) Cracking
(d) Leaching

3. The complete separation of two phases in emulsion is called
(a) Creaming
(b) Sedimentation
(c) Cracking
(d) Leaching

Breaking or Cracking

- Complete separation of oil and aqueous phase, irreversible.
- When ammonium chloride is gradually and slowly mixed into emulsion containing ammonium oleate, emulsion gets Cracked.
- When sodium chloride is gradually and slowly mixed into emulsion containing sodium oleate, emulsion gets Destabilize.
- Occurs due to addition of incompatible emulsifying agent. e. g. Monovalent soap + Divalent soap.

4. Which of the following is a natural emulsifying agent obtained from vegetable source (a) Starch (b) Gelatin (c) Egg yolk (d) Wool fat

4. Which of the following is a natural emulsifying agent obtained from vegetable source (a) Starch (b) Gelatin (c) Egg yolk (d) Wool fat

CLASSIFICATION OF EMULSIFYING AGENTS

1. Natural:

a. Vegetable source: Gum acacia, tragacanth, agar, starch,pectin, iris moss.

b. Animal sources: wool fat, egg yolk, gelatin.

2. Semi synthetic: Methyl cellulose, Na CMC

3. Synthetic:

- a. Anionic: Sodium Lauryl Sulphate
- b. Cationic: Cetrimide, benzalkonium chloride.
- C. Non-ionic: Glyceryl ester-glyceryl monoesters etc.

4. Inorganic: Milk of magnesia, Mg oxide, Mg trioxide etc.

5. Alcohols (polyoles): Carbowax, cholesterol and lecithin.

5. W/O emulsifiers have HLB scale value range
(a) 1-3
(b) 3-6
(c) 7-9
(d) 13-16

5. W/O emulsifiers have HLB scale value range
(a) 1-3
(b) 3-6
(c) 7-9
(d) 13-16

Explanation -

HLB RANGE	CATEGORY	EXAMPLE
1-3	Antifoaming agents	Simethicone
3-6	w/o emulsifying agents	Span 80,
		Span 60
7-9	Wetting agents	Span 20,
		Span 40
8-16	o/w emulsifying agents	Tween 20, 40, 60, 80
13-15	Detergents	Tween 20, 40
15-18	Solubilizing agents	SLS

6. Quaternary ammonium compounds are used as
(a) Nonionic emulsifying agent
(b) Cationic emulsifying agent
(c) Anionic emulsifying agent
(d) Natural emulsifying agent

6. Quaternary ammonium
compounds are used as
(a) Nonionic emulsifying agent
(b) Cationic emulsifying agent
(c) Anionic emulsifying agent
(d) Natural emulsifying agent

✓ Types of surfactants

Types	Example
Anionic	Sodium lauryl sulphate(SLS), Triaton-X200,
	Sodium acetyl sulphate, Docusate
Cationic	Benzalkonium chloride, Cetyl trimethyl
	ammonium, Cetrimide
Non-ionic	Tween, Span, Myrj, Brij, Diethanolamine, PEG,
	Tween 80
Amphoteric	N- alkylamino acid, Lecithin, Betaines

7. Bottle method is used for preparation of
(a) Suspensions
(b) Lotions
(c) Ointments
(d) Emulsions

7. Bottle method is used for preparation of
(a) Suspensions
(b) Lotions
(c) Ointments
(d) Emulsions

Preparation Method for Emulsion

- ✓ Dry Gum methods
 - $Oil + Gum \rightarrow Triturate \rightarrow Add water \rightarrow Again Triturate$
- ✓ Wet gum method
 - Water + Gum \rightarrow Triturate \rightarrow Add oil \rightarrow Again Triturate
- ✓ Bottle method Used for volatile or non viscous oils

8. Example for a cationic emulsifying agent
(a) Dioctyl sodium sulphosuccinate
(b) Polyoxyethylene sorbitan mono-oleate
(c) Cetyl trimethyl ammonium bromide
(d) Sodium carboxymethyl cellulose

8. Example for a cationic emulsifying agent
(a) Dioctyl sodium sulphosuccinate
(b) Polyoxyethylene sorbitan mono-oleate
(c) Cetyl trimethyl ammonium bromide
(d) Sodium carboxymethyl cellulose

✓ Types of surfactants

Types	Example
Anionic	Sodium lauryl sulphate(SLS), Triaton-X200,
	Sodium acetyl sulphate, Docusate
Cationic	Benzalkonium chloride, Cetyl trimethyl
	ammonium, Cetrimide
Non-ionic	Tween, Span, Myrj, Brij, Diethanolamine, PEG,
	Tween 80
Amphoteric	N- alkylamino acid, Lecithin, Betaines

9. Which of the following statements is FALSE respect to emulsions

(a) Emulsions are the finely divided solids which are dispersed in a liquid which acts as a continuous phase
(b) Emulsions are the liquid preparation containing two immiscible liquids, one of which is dispersed into the other as minute globules

(c) Emulsions has two phase dispersed phase and continuous phase

(d) Emulsifying agent is added to the system which forms a film around the globules in order to form an emulsion

9. Which of the following statements is FALSE respect to emulsions

(a) Emulsions are the finely divided solids which are dispersed in a liquid which acts as a continuous phase
(b) Emulsions are the liquid preparation containing two immiscible liquids, one of which is dispersed into the other as minute globules

(c) Emulsions has two phase dispersed phase and continuous phase

(d) Emulsifying agent is added to the system which forms a film around the globules in order to form an emulsion

Emulsion

- Biphasic system consisting of two immiscible liquids usually water and oil.
- It consists of two phase
 - Internal phase Dispersed or Discontinuous
 - **External phase** Dispersion or Continuous
- Emulsion is coarse dispersion having globule size 0.1-100 mm
- It may be defined as biphasic liquid dosage form in which two liquids are immiscible with each other.
- Thermodynamically unstable, emulsifying agents are needed.

10. Which one of the following is an emulsifying agent from the vegetable source
(a) Gelatin
(b) Acacia
(c) Wool fat
(d) Methyl cellulose

10. Which one of the following is an emulsifying agent from the vegetable source
(a) Gelatin
(b) Acacia
(c) Wool fat
(d) Methyl cellulose

CLASSIFICATION OF EMULSIFYING AGENTS

1. Natural:

a. Vegetable source: Gum acacia, tragacanth, agar, starch,pectin, iris moss.

b. Animal sources: wool fat, egg yolk, gelatin.

2. Semi synthetic: Methyl cellulose, Na CMC

3. Synthetic:

- a. Anionic: Sodium Lauryl Sulphate
- b. Cationic: Cetrimide, benzalkonium chloride.
- C. Non-ionic: Glyceryl ester-glyceryl monoesters etc.

4. Inorganic: Milk of magnesia, Mg oxide, Mg trioxide etc.

5. Alcohols (polyoles): Carbowax, cholesterol and lecithin.

PREPARING FOR PHARMACIST EXAM

MISSION PHARMACIST PREVIOUS YEAR OBJECTIVE BOOK

Best PYQ Book for Question Practice COD Available

Order करने के लिए बैनर पर क्लिक करें

DAILY UPDATES जुडि़ए PHARMACY INDIA के साथ.....

WHATSAPP & TELEGRAM SE JUDNE KE LIYE ICONS PAR CLICK KARE

Mobile Phone Par Click karein

11. Coalescence of the dispersed globules and separation of the disperse as a separate layer in an emulsion is called (a) Cracking (b) Creaming (c) Phase inversion (d) Breaking

11. Coalescence of the dispersed globules and separation of the disperse as a separate layer in an emulsion is called (a) Cracking (b) Creaming (c) Phase inversion (d) Breaking

Breaking or Cracking

- Complete separation of oil and aqueous phase, irreversible.
- When ammonium chloride is gradually and slowly mixed into emulsion containing ammonium oleate, emulsion gets Cracked.
- When sodium chloride is gradually and slowly mixed into emulsion containing sodium oleate, emulsion gets Destabilize.
- Occurs due to addition of incompatible emulsifying agent. e. g. Monovalent soap + Divalent soap.

12. Preparation of emulsions using fixed oil the ratio of Oil: Water: Gum
(a) 4:2:1
(b) 2:2:1
(c) 3:2:1
(d) 1:2:1

12. Preparation of emulsions using fixed oil the ratio of Oil: Water: Gum
(a) 4:2:1
(b) 2:2:1
(c) 3:2:1
(d) 1:2:1

PROPORTION	OIL	WATER	GUM	METHOD
Fixed Oil	4	2	1	F (4:2:1)
(Castor Oil, Cod liver Oil, Olive Oil, Almond Oil)				Dry/ Wet gum method
Mineral Oil	3	2	1	M (3:2:1)
(Paraffin Oil)				Bottle method
Volatile Oil	2	2	1	V (2:2:1)
(Turpentine Oil, Sandal wood Oil, Cinnamon Oil)				Bottle method
Oleo Resin	1	2	1	0 (1:2:1)
(Balsam of peru)				

13. Which is NOT true for dry gum method
(a) Dry acacia is used
(b) It is a quick process
(c) All apparatus should be dry
(d) Primary emulsion is viscous and creamy

13. Which is NOT true for dry gum method
(a) Dry acacia is used
(b) It is a quick process
(c) All apparatus should be dry
(d) Primary emulsion is viscous and creamy

Dry gum method

- Measure the required quantity of oil in a dry measure and transfer it into a dry mortar.
- Add the calculated quantity of gum acacia into it and triturate rapidly so as to form a uniform mixture.
- Add required quantity of water and triturate vigorously till a clicking sound is produced and the product becomes white or nearly white due to the total internal reflection of light. The emulsion produced at this stage is known as primary emulsion.
- Add more of water to produce required volume.

14. Which of the following is true about Agar (a) It is not a good emulsifying agent, as it forms a very coarse and viscous emulsion (b) It is used in agent by preparing 10% mucilage, by dissolving in boiling water and cooled at 20°C (c) It is rarely used as an emulsifying agent because it produces very coarse and thick emulsion (d) Stable emulsion can be prepared with gum acacia as emulsifying agent

14. Which of the following is true about Agar (a) It is not a good emulsifying agent, as it forms a very coarse and viscous emulsion (b) It is used in agent by preparing 10% mucilage, by dissolving in boiling water and cooled at 20°C (c) It is rarely used as an emulsifying agent because it produces very coarse and thick emulsion (d) Stable emulsion can be prepared with gum acacia as emulsifying agent

Agar

- It is used in agent by preparing 10% mucilage, by dissolving in boiling water and cooled at 20°C.
- It is rarely used as an emulsifying agent because it produces very coarse and thick emulsion.
- Stable emulsion can be prepared with gum acacia as emulsifying agent.

15. Increasing the proportion of the dispersed phase of an emulsion by more than 60% may lead to (a) Cracking (b) Frothing (c) Phase inversion (d) Creaming

15. Increasing the proportion of the dispersed phase of an emulsion by more than 60% may lead to (a) Cracking (b) Frothing (c) Phase inversion (d) Creaming

Phase inversion:

- Inversion in which O/W emulsion inverts to become a W/O emulsion and vice versa.
- The reason for the phase inversion is using of wrong type of emulsifying agents.
 Causes
- Addition of an electrolyte may lead to phase inversion.
- May arise due to inappropriate emulsifier.

16. Which of the following is an emulsifying agent of wool fat
(a) Lanolin
(b) Wool alcohol
(c) Paraffin wax
(d) Mineral oil

16. Which of the following is an emulsifying agent of wool fat
(a) Lanolin
(b) Wool alcohol
(c) Paraffin wax
(d) Mineral oil

CLASSIFICATION OF EMULSIFYING AGENTS

1. Natural:

a. Vegetable source: Gum acacia, tragacanth, agar, starch,pectin, iris moss.

b. Animal sources: wool fat, egg yolk, gelatin.

2. Semi synthetic: Methyl cellulose, Na CMC

3. Synthetic:

- a. Anionic: Sodium Lauryl Sulphate
- b. Cationic: Cetrimide, benzalkonium chloride.
- C. Non-ionic: Glyceryl ester-glyceryl monoesters etc.

4. Inorganic: Milk of magnesia, Mg oxide, Mg trioxide etc.

5. Alcohols (polyoles): Carbowax, cholesterol and lecithin.

17. Separation of dispersed phase of an emulsion into separate layers is called
(a) Cracking
(b) Irrigation
(c) Thickening
(d) Dispersing

17. Separation of dispersed phase of an emulsion into separate layers is called
(a) Cracking
(b) Irrigation
(c) Thickening
(d) Dispersing

Breaking or Cracking

- Complete separation of oil and aqueous phase, irreversible.
- When ammonium chloride is gradually and slowly mixed into emulsion containing ammonium oleate, emulsion gets Cracked.
- When sodium chloride is gradually and slowly mixed into emulsion containing sodium oleate, emulsion gets Destabilize.
- Occurs due to addition of incompatible emulsifying agent. e. g. Monovalent soap + Divalent soap.

18. Which one of the following is an example for reversible process
(a) Creaming
(b) Cracking
(c) Phase inversion
(d) Both (b) and (c)

18. Which one of the following is an example for reversible process
(a) Creaming
(b) Cracking
(c) Phase inversion
(d) Both (b) and (c)

Creaming

- It is the concentration of globules at the top or bottom of emulsion.
- Rate of creaming is determined by Stoke's equation

✓ Prevented by

- Reducing particle size by homogenization.
- Increasing viscosity by adding thickening agent.
- Reducing the difference in densities.

19. Which of the following emulsifying agent
is from plant source
(a) Egg yolk
(b) Lecithin
(c) Lanolin
(d) Pectin

19. Which of the following emulsifying agent is from plant source
(a) Egg yolk
(b) Lecithin
(c) Lanolin
(d) Pectin

CLASSIFICATION OF EMULSIFYING AGENTS

1. Natural:

a. Vegetable source: Gum acacia, tragacanth, agar, starch,pectin, iris moss.

b. Animal sources: wool fat, egg yolk, gelatin.

2. Semi synthetic: Methyl cellulose, Na CMC

3. Synthetic:

- a. Anionic: Sodium Lauryl Sulphate
- b. Cationic: Cetrimide, benzalkonium chloride.
- C. Non-ionic: Glyceryl ester-glyceryl monoesters etc.

4. Inorganic: Milk of magnesia, Mg oxide, Mg trioxide etc.

5. Alcohols (polyoles): Carbowax, cholesterol and lecithin.

20. The amount of castor oil in commercial emulsion ranges from (a) 1-10% (b) 30-50% (c) 70-74% (d) 80-85%

20. The amount of castor oil in commercial emulsion ranges from (a) 1-10% (b) 30-50% (c) 70-74% (d) 80-85%

PROPORTION	OIL	WATER	GUM	METHOD
Fixed Oil	4	2	1	F (4:2:1)
(Castor Oil, Cod liver Oil, Olive Oil, Almond Oil)				Dry/ Wet gum method
Mineral Oil	3	2	1	M (3:2:1)
(Paraffin Oil)				Bottle method
Volatile Oil	2	2	1	V (2:2:1)
(Turpentine Oil, Sandal wood Oil, Cinnamon Oil)				Bottle method
Oleo Resin	1	2	1	0 (1:2:1)
(Balsam of peru)				

PREPARING FOR PHARMACIST EXAM

MISSION PHARMACIST PREVIOUS YEAR OBJECTIVE BOOK

Best PYQ Book for Question Practice COD Available

Order करने के लिए बैनर पर क्लिक करें

DAILY UPDATES जुडि़ए PHARMACY INDIA के साथ.....

WHATSAPP & TELEGRAM SE JUDNE KE LIYE ICONS PAR CLICK KARE

Mobile Phone Par Click karein

21. A cationic surfactant used as disinfectant
(a) Benzalkonium chloride
(b) Hexachlorophene
(c) Chloroxylenol
(d) Proflavine

21. A cationic surfactant used as disinfectant
(a) Benzalkonium chloride
(b) Hexachlorophene
(c) Chloroxylenol
(d) Proflavine

- Cationic surfactants are positively charged in an aqueous solution (e.g. quaternary ammonium and pyridinium), and expensive.
- Because of their bactericidal action, they are widely used for other applications such as preservatives, sterilizing contaminated surfaces, and emulsions.

22. Emulsions containing more than two phases are called as
(a) Mixed emulsion
(b) Heterogenous emulsion
(c) Homogenized emulsion
(d) Multiple emulsion

22. Emulsions containing more than two phases are called as
(a) Mixed emulsion
(b) Heterogenous emulsion
(c) Homogenized emulsion
(d) Multiple emulsion
SPECIAL TYPES OF EMULSION

- Size of globules 0.1 -100 µm (Generally)
- The internal phase in monodisperse system (All particles having the same size) should not be more than 74% of total volume of system.
- Suitable for dosage formulation of olive oil, vitamin A and water. [GATE-03]

23. Which one of the following is an example of non-ionic emulsifying agent
(a) Yellow paraffin wax
(b) Bee's wax
(c) Liquid paraffin
(d) Spans

23. Which one of the following is an example of non-ionic emulsifying agent
(a) Yellow paraffin wax
(b) Bee's wax
(c) Liquid paraffin
(d) Spans

✓ Types of surfactants

Types	Example		
Anionic	Sodium lauryl sulphate(SLS), Triaton-X200,		
	Sodium acetyl sulphate, Docusate		
Cationic	Benzalkonium chloride, Cetyl trimethyl		
	ammonium, Cetrimide		
Non-ionic	Tween, Span, Myrj, Brij, Diethanolamine, PEG,		
	Tween 80		
Amphoteric	N- alkylamino acid, Lecithin, Betaines		

24. HLB system was developed by
(a) Griffin
(b) Stock's
(c) Dalla Valle
(d) None of these

24. HLB system was developed by
(a) Griffin
(b) Stock's
(c) Dalla Valle
(d) None of these

Hydrophilic Lipophilic Balance(HLB) System

- Determined by Griffin
- Hydrophilic–lipophilic balance (HLB) is the balance of the size and strength of the hydrophilic and lipophilic moieties of a surfactant molecule.

25. Example for anionic surfactant
(a) Glycine
(b) Sodium dodecyl sulphate
(c) Trialkyl ammonium
(d) Polyethylene glycol

25. Example for anionic surfactant
(a) Glycine
(b) Sodium dodecyl sulphate
(c) Trialkyl ammonium
(d) Polyethylene glycol

✓ Types of surfactants

Types	Example		
Anionic	Sodium lauryl sulphate(SLS), Triaton-X200,		
	Sodium acetyl sulphate, Docusate		
Cationic	Benzalkonium chloride, Cetyl trimethyl		
	ammonium, Cetrimide		
Non-ionic	Tween, Span, Myrj, Brij, Diethanolamine, PEG,		
	Tween 80		
Amphoteric	N- alkylamino acid, Lecithin, Betaines		

26. Spans & Tweens are
(a) Highly polymerized mannuronic acid anhydride
(b) Phospholipids
(c) Polyoxyalkylene derivative
(d) Glycoside

26. Spans & Tweens are
(a) Highly polymerized mannuronic acid anhydride
(b) Phospholipids
(c) Polyoxyalkylene derivative
(d) Glycoside

Tweens, which are polyoxyethylene derivatives of spans, are hydrophilic and have high HLB values (9.6-16.7). In order to form stable emulsions, an emulsifier or emulsifier mixture having HLB value equal to the HLB value of the oil phase should be used.

27. Sodium lauryl Sulphate is (a) Cationic surface active agents (b) Ampholytic surface active agents (c) Nonionic surface active agents (d) Anionic surface active agents

27. Sodium lauryl Sulphate is (a) Cationic surface active agents (b) Ampholytic surface active agents (c) Nonionic surface active agents (d) Anionic surface active agents

✓ Types of surfactants

Types	Example		
Anionic	Sodium lauryl sulphate(SLS), Triaton-X200,		
	Sodium acetyl sulphate, Docusate		
Cationic	Benzalkonium chloride, Cetyl trimethyl		
	ammonium, Cetrimide		
Non-ionic	Tween, Span, Myrj, Brij, Diethanolamine, PEG,		
	Tween 80		
Amphoteric	N- alkylamino acid, Lecithin, Betaines		

28. In the formulation, to facilitate the wetting of insoluble solids, which of the following agents is used (a) Suspending agents (b) Flavoring agents (c) Wetting agents (d) None of these

28. In the formulation, to facilitate the wetting of insoluble solids, which of the following agents is used (a) Suspending agents (b) Flavoring agents (c) Wetting agents (d) None of these

Wetting Phenomena

In industry large quantities of powders such as talc or charcoal are added to water. These powders do not get wetted properly in spite of their higher densities than water., instead these float on the surfaces.

Wetting is an adsorption process in which an intimate contact of the solids with liquid phase is achieved.
 In the formulation, to facilitate the wetting of insoluble solids wetting agents are used.

29. The liquid drops or gas bubbles are always spherical due to
(a) Volume tension
(b) Surface tension
(c) Gravitational force
(d) Magnetic force

29. The liquid drops or gas bubbles are always spherical due to
(a) Volume tension
(b) Surface tension
(c) Gravitational force
(d) Magnetic force

Surface Tension & Interfacial tension

S.No.	Surface tension	Interfacial tension	
1.	Surface tension is defined as the force	Interfacial tension is the force per unit length	
	per unit length parallel to the surface	existing at the interface between two	
	to counter balance the net inward pull.	immiscible liquid phases.	
2.	Water molecules in the bulk experience	Interfacial tension is less than surface	
	equal cohesive forces of attraction.	tension because the adhesive force between	
	Therefore, net force is zero.	two liquid phases forming an interface are	
	Molecules on the surface experiences	greater than when a liquid and a gas phase	
	less adhesive force of attraction	exist together.	
	between air molecule and water	If two liquids are completely miscible, no	
	molecule than the cohesive force	interfacial tension exist between them.	
	between water molecules in bulk.		
3 .	Indicates strength of cohesive force.	Indicates strength of adhesive force.	
	(force of attraction between same	(force of attraction between different	
	molecules)	molecules)	
4.	CGS unit – dynes/ cm	CGS unit – dynes/ cm	
	SI system – Newton/ m	SI system – Newton/ m	

30. Dilatant material termed as
(a) Shear thickening system
(b) Shear thinning system
(c) Plastic system
(d) Pseudoplastic system

30. Dilatant material termed as
(a) Shear thickening system
(b) Shear thinning system
(c) Plastic system
(d) Pseudoplastic system

PREPARING FOR PHARMACIST EXAM

MISSION PHARMACIST PREVIOUS YEAR OBJECTIVE BOOK

Best PYQ Book for Question Practice COD Available

Order करने के लिए बैनर पर क्लिक करें

DAILY UPDATES जुडि़ए PHARMACY INDIA के साथ.....

WHATSAPP & TELEGRAM SE JUDNE KE LIYE ICONS PAR CLICK KARE

Mobile Phone Par Click karein

S.No.	PLASTIC FLOW	PSEUDOPLASTIC FLOW	DILATANT FLOW
1	Curves do not pass through origin	Curve begins at the origin	It also originate from origin
2	Lines extrapolates to axis, leads to formation of linear curve called yield value.	No part of curve is linear so, no yield value	No yield value
3	Flocculated suspension ↑ses yield value	Mainly natural & synthetic gum exhibit Pseudoplastic flow.	Curve exhibit dilatant flow
4	Slope = Mobility f = yield value Shearing stress \rightarrow	f_{S}	f f f f f f f f f f

PHARMACY INDIA

5	$Equ^{n} \rightarrow \qquad $	$Equ^{n} \rightarrow F^{N} = \eta' G$	$Equ^{n} \rightarrow F^{N} = \eta' G$
	U = Plastic viscosity f = Yield value $[N/m^2]$ G = Rate of shear [S] F = Shear stress $[N/m^2]$	N = 1 (Newtonian flow) N > 1 (Non-newtonian flow)	$N < 1$ = degree of dilatency \uparrow ses $N = 1$ = Newtonian flow $N > 1$ = Non-newtonian
6	Known as Bingham bodies	SHEAR THINNING SYSTEM	SHEAR THICKENING SYSTEM
7	It doesn't flow until shearing stress is extended as yield value	Polymer at rest random arrangement water is bound Polymer at rest random arrangement water is released	Rate of
8	Viscosity is linearly increase with increase in rate of shear	Viscosity of pseudoplastic substance decrease with increase rate of shear	Viscosity of dilatant substance increases with increase in stress
9	Eg : Flocculated particles in concentrated suspension	Eg : Liquid dispersion of natural and synthetics gums (tragacanth, Sodium alginate, Methyl cellulose, Sodium carboxy methyl cellulose)	 Eg: Suspension containing high concentration of solids, Suspension of starch in water, Inorganic pigments in water, kaolin in water, zinc oxide in water

31. Fluid moves in a direction opposite to the sedimentation movement
(a) Settling
(b) Elutriation
(c) Centrifugation
(d) Precipitation

31. Fluid moves in a direction opposite to the sedimentation movement
(a) Settling
(b) Elutriation
(c) Centrifugation
(d) Precipitation

Elutriation

Elutriation is a process for separating particles based on their size, shape and density, using a stream of gas or liquid flowing in a direction usually opposite to the direction of sedimentation.

32. How surfactants will facilitate or aid wetting of hydrophobic materials in liquid(a) By decreasing the solid-liquid interfacial tension

- (b) By increasing the solid-liquid interfacial tension
- (c) By decreasing the solid-liquid interfacial tension and by increasing the solid-liquid interfacial tension
 (d) None of these

32. How surfactants will facilitate or aid wetting of hydrophobic materials in liquid(a) By decreasing the solid-liquid interfacial tension

- (b) By increasing the solid-liquid interfacial tension
- (c) By decreasing the solid-liquid interfacial tension and by increasing the solid-liquid interfacial tension
 (d) None of these

Surfactants

- Surfactants are used as emulsifying agent/emulgents.
- They decrease interfacial tension.
- They prevent coalescence of droplets and stabilize the system by acting as barrier to droplets.
- Classified by presence of water and fat solubilizing group in same molecule.

33. Coulter current method used for determination of
(a) Number of particle
(b) Particle volume
(c) Particle velocity
(d) All of these

33. Coulter current method used for determination of
(a) Number of particle
(b) Particle volume
(c) Particle velocity
(d) All of these

COULTER COUNTER METHOD

- It operates on the principle that when a particle suspended in a conducting liquid passes through a small orifice (opening), on either side of which are electrodes, a change in electric resistance occurs.
- The coulter counter is a popular instrument for measuring the particle volume & particle size.

34. "Zephiran" is a
(a) Anionic
(b) Cationic
(c) Non-ionic
(d) Ampholytic

34. "Zephiran" is a
(a) Anionic
(b) Cationic
(c) Non-ionic
(d) Ampholytic

Zephiran Zephiran, also known as benzalkonium chloride, is a cationic detergent and ammonium compound that's used as a disinfectant and antiseptic in the medical field. It's also a germicide and topical antiseptic. **Zephiran is chemically stable, has low surface** tension, and is an efficient wetting agent.

35. The most important influence of temperature on emulsion stability
(a) Creaming
(b) Caking
(c) Cracking
(d) Phase inversion

35. The most important influence of temperature on emulsion stability
(a) Creaming
(b) Caking
(c) Cracking
(d) Phase inversion

Phase inversion:

- Inversion in which O/W emulsion inverts to become a W/O emulsion and vice versa.
- The reason for the phase inversion is using of wrong type of emulsifying agents.
 Causes
- Addition of an electrolyte may lead to phase inversion.
- May arise due to inappropriate emulsifier.

36. Example for a non-ionic emulsifying agent
(a) Sodium lauryl sulphate
(b) Polyoxyethylene sorbitan monooleate
(c) Cetyltrimethyl ammonium bromide
(d) Dodecyl pyridinium chloride

36. Example for a non-ionic emulsifying agent
(a) Sodium lauryl sulphate
(b) Polyoxyethylene sorbitan monooleate
(c) Cetyltrimethyl ammonium bromide
(d) Dodecyl pyridinium chloride

Tween 80

- Polyoxyethylene sorbitan monooleate.
- Polysorbate 80 is a nonionic surfactant and emulsifier often used in pharmaceuticals, foods, and cosmetics. This synthetic compound is a viscous, water-soluble yellow liquid.

37. Which of the following is NOT an instability problem of emulsion
(a) Creaming
(b) Phase inversion
(c) Cracking
(d) Flashing

37. Which of the following is NOT an instability problem of emulsion
(a) Creaming
(b) Phase inversion
(c) Cracking
(d) Flashing

Instability problem of emulsion

38. Which of the following is NOT used as an emulsifying agent
(a) Surfactant
(b) Hydrophilic colloids
(c) Electrolytes
(d) Finely divided solids

38. Which of the following is NOT used as an emulsifying agent
(a) Surfactant
(b) Hydrophilic colloids
(c) Electrolytes
(d) Finely divided solids

Emulsifying agent

Class	Examples		
1. Surface active agents			
Cationic	Quaternary ammonium compounds: Cetrimide, Benzalkonium chloride		
• Nonionic	 Polyoxy ethylene fatty alcohol ethers C12H25 (OCH2CH2)nOH 		
	• Sorbitan fatty acid esters		
	 Polyoxyethylene sorbitan fatty acid esters 		
	 Polyoxyethylene polyoxypopylene block copolymers 		
	• Lanolin alcohols and ethoxylated lanolin alcohols		
Anionic	 Soaps - Mono valent, Polyvalent, Organic 		
	• Sulphates		
	• Sulphonates (CH3(CH2)n CH2SO3 – Na+)		
2. Hydrophilic colloids			
• Semisynthetic	• Sodium carboxymethyl cellulose		
	• Hydroxyl propyl cellulose		
	• Methyl cellulose		
• Natural	• Plant origin - Acacia , Tragacanth, Agar, Pectin, lecithin		
	• Animal origin – Gelatin, Lecithin, Cholesterol, Wool fat, Egg yolk		
3. Finely divided solids			
Colloidal clays	 Bentonite (Al2O3.4SiO2.H2O) Veegum (Magnesium Aluminium silicate) 		
	• Magnesium trisilicate		
Metallic hydroxides	Magnesium hydroxide		
	• Aluminium hydroxide		

39. In relation to emulsion, formation of a layer of relatively concentrated emulsion above or below the surface is known as (a) Cracking (b) Creaming (c) Mottling (d) Phase inversion

39. In relation to emulsion, formation of a layer of relatively concentrated emulsion above or below the surface is known as (a) Cracking (b) Creaming (c) Mottling (d) Phase inversion

Creaming

- It is the concentration of globules at the top or bottom of emulsion.
- Rate of creaming is determined by Stoke's equation

✓ Prevented by

- Reducing particle size by homogenization.
- Increasing viscosity by adding thickening agent.
- Reducing the difference in densities.

40. To identify the emulsion type, which of the following tests are conducted
(a) Dilution test
(b) Dye test
(c) Conductivity test
(d) All of these

40. To identify the emulsion type, which of the following tests are conducted
(a) Dilution test
(b) Dye test
(c) Conductivity test
(d) All of these

Identification test

		PHARMACY
Test	O/W emulsion	W/O emulsion
Color	Usually white	Takes the color of oil
Feel on skin	Non-greasy	Greasy
Dye solubility test	Water soluble dye(amaranth) Continous phase – coloured Oil soluble dye(sudan III) Globules – coloured	Water soluble dye(amaranth) Globules – coloured Oil soluble dye(sudan III) Continous phase – coloured
Bottling paper test	Wet the bottling paper	Does not wet the blotting paper
Conductivity test	Conducts current	Does not conduct current
Direction of creaming	Upward movement	Downward movement
Fluorescence test	Exhibits dot pattern fluorescence	Exhibits fluorescence throughout the emulsion
CoCl ₂ /Filter paper	Filter paper changes from blue to	No change
test	pink	

PREPARING FOR PHARMACIST EXAM

MISSION PHARMACIST PREVIOUS YEAR OBJECTIVE BOOK

Best PYQ Book for Question Practice COD Available

Order करने के लिए बैनर पर क्लिक करें

PHARMACIST ONLINE LIVE CLASSES

JULY BATCH

ON STUDENTS DEMAND CLASSES EXTEND

MISSION

LIVE CLASSES STARTING FROM -22ND JULY 2024 DSSSB, RRB, SEPOY, AIIMS, CGHS ESIC, JSSC & OSSSC

Course check करने के लिए बैनर पर क्लिक करें

Connect for admission related queries

DAILY UPDATES जुडि़ए PHARMACY INDIA के साथ.....

WHATSAPP & TELEGRAM SE JUDNE KE LIYE ICONS PAR CLICK KARE

Mobile Phone Par Click karein