

VIDEO DEKHNE KE LIYE BANNER PAR CLICK KARE

DOWNLOAD "PHARMACY INDIA" MOBILE APP

PHARMACY

Mobile Phone Par Click karein

DAILY UPDATES जुडि़ए PHARMACY INDIA के साथ.....

WHATSAPP & TELEGRAM SE JUDNE KE LIYE ICONS PAR CLICK KARE

 Which one of the following is used as an antimicrobial preservative

 (a) Propylene glycol
 (b) Procaine hydrochloride
 (c) Propyl hydroxyl benzoate
 (d) Sodium hydrogen carbonate

 Which one of the following is used as an antimicrobial preservative

 (a) Propylene glycol
 (b) Procaine hydrochloride
 (c) Propyl hydroxyl benzoate
 (d) Sodium hydrogen carbonate

Antimicrobial preservative

- Propyl hydroxyl benzoate
- Benzyl alcohols
- Chlorobutanol
- Methyl paraben
- Propyl paraben
- Phenol
- Phenyl mercuric acetate
- Phenyl mercuric nitrate

2. Colloidal dispersion of liquids or solids in gases are
(a) Aerosols
(b) Emulsion
(c) Creams
(d) Suspensions

2. Colloidal dispersion of liquids or solids in gases are
(a) Aerosols
(b) Emulsion
(c) Creams
(d) Suspensions

DISPERSED PHASE	DISPERSION MEDIUM	TYPE OF COLLOID	EXAMPLES
SOLID	SOLID	SOLID SOL	COLOURED GLASSES & GEM STONES
SOLID	LIQUID	SOL	PAINTS , CELL FLUIDS , INK , GOLD SOL , PROTEINS
SOLID	GAS	AEROSOL	SMOKE , DUST
LIQUID	SOLID	GEL	CHEESE , BUTTER , JELLIES , BOOT POLISH
LIQUID	LIQUID	EMULSION	MILK , HAIR CREAM
LIQUID	GAS	AEROSOL	FOG , MIST , CLOUD , INSECTICIDE SPRAYS
GAS	SOLID	SOLID SOL	PUMICE STONE , FOAM RUBBER
GAS	LIQUID	FOAM	FROTH , WHIPPED CREAM , SOAP SUDS

3. Ratio of oil: water: gum for preparing an emulsion using volatile oil
(a) 2:2:1
(b) 4:2:1
(c) 3:2:1
(d) 1:1:2

3. Ratio of oil: water: gum for preparing an emulsion using volatile oil
(a) 2:2:1
(b) 4:2:1
(c) 3:2:1
(d) 1:1:2

PROPORTION	OIL	WATER	GUM	METHOD
Fixed Oil	4	2	1	F (4:2:1)
(Castor Oil, Cod liver Oil, Olive Oil, Almond Oil)				Dry/ Wet gum method
Mineral Oil	3	2	1	M (3:2:1)
(Paraffin Oil)				Bottle method
Volatile Oil	2	2	1	V (2:2:1)
(Turpentine Oil, Sandal wood Oil, Cinnamon Oil)				Bottle method
Oleo Resin		2	1	0 (1:2:1)
(Balsam of peru)				

4. Phase inversion in emulsion involve (a) Change of emulsion type (b) Complete separation of two phases (c) Formation of aggregates (d) Upward movements of floccules

4. Phase inversion in emulsion involve
(a) Change of emulsion type
(b) Complete separation of two phases
(c) Formation of aggregates
(d) Upward movements of floccules

Phase inversion

- In phase inversion, o/w type emulsion changes into w/o type and vice versa.
- Brought about by changing the phase volume ratio, temperature change or by addition of electrolyte.
- When stoichiometric amount of CaCl₂ is added to an emulsion stabilized with sodium alginate, it will change nature from w/o to o/w.

5. Shelf life of a pharmaceutical product is computed by
(a) Fick's laws
(b) Arrhenius equation
(c) Higuchi equation
(d) Noyes Whitney equation

5. Shelf life of a pharmaceutical product is computed by
(a) Fick's laws
(b) Arrhenius equation
(c) Higuchi equation
(d) Noyes Whitney equation

If the degradation rate and temperature are linearly related, the prediction of shelf life can be approximated by the Arrhenius equation.

 $\mathbf{K} = \mathbf{A}\mathbf{e}^{-\mathbf{E}\mathbf{a}/\mathbf{R}\mathbf{T}}$

In the Arrhenius equation,

k is the reaction-rate constant,

A represents the frequency at which atoms and molecules collide in a way that leads to a reaction,

- E is the activation energy for the reaction,
- R is the ideal gas constant (8.314 joules per kelvin per mole), and
- T is the absolute temperature.

6. The phase inversion temperature (PIT) of a surfactant is one at which (a) Surfactant forms micelle (b) Surfactant melts (c) Hydrophilic and lipophilic properties of surfactant are balanced (d) Surfactant undergoes inversion

6. The phase inversion temperature (PIT) of a surfactant is one at which (a) Surfactant forms micelle (b) Surfactant melts (c) Hydrophilic and lipophilic properties of surfactant are balanced (d) Surfactant undergoes inversion

Phase Inversion Temperature

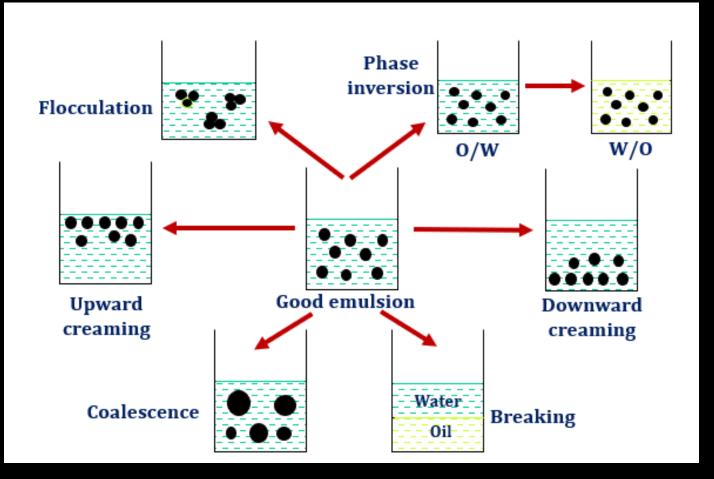
A surfactant's phase inversion temperature (PIT) is the point at which a surfactant-oil-water (SOW) system switches from an oil-inwater (O/W) emulsion to a water-in-oil (W/O) emulsion, and vice versa. It's a crucial process parameter in emulsification.

7. Types of emulsion may be determined by (a) Leakage test (b) Conductivity test (c) Toxicity test (d) Bubble point test

7. Types of emulsion may be determined by (a) Leakage test (b) Conductivity test (c) Toxicity test (d) Bubble point test

Identification test

Test	O/W emulsion	W/O emulsion		
Color	Usually white	Takes the color of oil		
Feel on skin	Non-greasy	Greasy		
Dye solubility test	Water soluble dye(amaranth)	Water soluble dye(amaranth)		
	Continous phase – coloured	Globules – coloured		
	Oil soluble dye(sudan III)	Oil soluble dye(sudan III)		
	Globules – coloured	Continous phase – coloured		
Bottling paper test	Wet the bottling paper	Does not wet the blotting paper		
Conductivity test	Conducts current	Does not conduct current		
Direction of creaming	Upward movement	Downward movement		
Fluorescence test	Exhibits dot pattern fluorescence	Exhibits fluorescence throughout the		
		emulsion		
CoCl ₂ /Filter paper test	Filter paper changes from blue to	No change		
	pink			


8. Which one is NOT related with the physical instability of an emulsion
(a) Phase inversion
(b) Creaming or sedimentation
(c) Breaking
(d) Oxidation of the components

8. Which one is NOT related with the physical instability of an emulsion
(a) Phase inversion
(b) Creaming or sedimentation
(c) Breaking
(d) Oxidation of the components

□ Instability of Emulsion

9. On commercial scale, emulsions are prepared
by

(a) Dialysis
(b) Freezing
(c) Homogenisation
(d) Centrifugation

9. On commercial scale, emulsions are prepared
by
(a) Dialysis
(b) Freezing
(c) Homogenization
(d) Centrifugation

On commercial scale, emulsions are prepared by

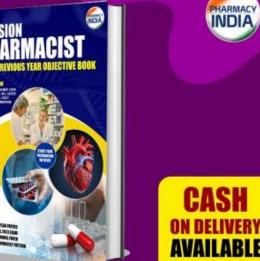
- Mechanical Stirrer
- Homogenizers
- Ultrasonifiers
- Colloidal Mills

10. To increase the viscosity of liquid, which of the following agents are used
(a) PVP
(b) Benzalkonium chloride
(c) Sodium Carboxy Methyl Cellulose
(d) All of these

10. To increase the viscosity of liquid, which of the following agents are used
(a) PVP
(b) Benzalkonium chloride
(c) Sodium Carboxy Methyl Cellulose
(d) All of these

Viscosity Enhancers

- Viscosity enhancers are avoided for the preparation of parenterals, owing to their high viscosity.
- Viscosity enhancers are prepared by hydrocolloids such as methyl cellulose, Sodium CMC, HPMC, or bentonite etc. produces high viscosity at low concentration.



PREPARING FOR PHARMACIST EXAM

MISSION PHARMACIST PREVIOUS YEAR OBJECTIVE BOOK

Best PYQ Book for Question Practice COD Available

Order करने के लिए बैनर पर क्लिक करें

DAILY UPDATES जुडि़ए PHARMACY INDIA के साथ.....

WHATSAPP & TELEGRAM SE JUDNE KE LIYE ICONS PAR CLICK KARE

Mobile Phone Par Click karein

11. These ointments are used to relieve itching. Commonly used drugs are benzocaine and coaltar

(a) Anti eczematous ointments
(b) Antipruritic ointments
(c) Keratolytic ointments

(d) Counter-irritant ointments

11. These ointments are used to relieve itching. Commonly used drugs are benzocaine and coaltar (a) Anti eczematous ointments (b) Antipruritic ointments (c) Keratolytic ointments (d) Counter-irritant ointments

Antipruritic ointments are used to relieve itching.
 Commonly used drugs are benzocaine and coaltar.

12. Which one of these paraffin wax is used in eye ointment

(a) White soft paraffin(b) Yellow soft paraffin(c) Hard paraffin(d) None of these

12. Which one of these paraffin wax is used in eye ointment (a) White soft paraffin (b) Yellow soft paraffin (c) Hard paraffin

(d) None of these

Eye ointments containing yellow soft paraffins are used to relieve eye dryness and irritation.
They moisten, soothe and lubricate the surface of your eye, making it feel more comfortable.

13. Which type of base is required for antibiotic ointment (a) PEG base (b) Absorption base (c) Hydrocarbon base

(d) None of these

13. Which type of base is required for antibiotic ointment (a) PEG base (b) Absorption base (c) Hydrocarbon base (d) None of these

Hydrocarbon base is required for antibiotic ointment.

14. Beeswax is an example of which type of ointment base

- (a) Hydrocarbon/oleaginous
- (b) Absorption base
- (c) Water miscible/removable
- (d) Water soluble

14. Beeswax is an example of which type of ointment base
(a) Hydrocarbon/oleaginous
(b) Absorption base
(c) Water miscible/removable
(d) Water soluble

Ointment bases

Ointment Bases	Properties	Examples
Oleagenous bases	Occlusive, hydrophobic,	White petrolatum (Soft
	greasy, non-washable.	paraffin), Hard paraffin,
		Liquid paraffin
Absorption bases	Occlusive, Water absorbent,	Wool fat, Hydrous wool
	greasy, anhydrous.	fat (lanolin), Wool
		alcohol, Bees wax
Emulsion bases		
W/O type emulsion	Occlusive, hydrous,	Lanolin, cold cream
bases	hydrophilic, greasy, non-	
	washable.	
O/W type emulsion	Non-occlusive, can be diluted	Hydrophilic ointment
bases	with water, non-greasy,	
	washable.	
Water soluble bases	Water-soluble, washable,	Polyethylene glycol
	non-greasy, non-occlusive,	(Macrogals, Carbowax)
	lipid free.	

15. Pastes differ from ointment by containing (a) Zinc oxide (b) Paraffin (c) Finely powdered particles (d) Preservatives

15. Pastes differ from ointment by containing (a) Zinc oxide (b) Paraffin (c) Finely powdered particles (d) Preservatives

Ointment	Paste	
Ointments contain	They contain large amount of	
medicaments which are	finely powdered solids such as	
generally dissolved/	starch, zinc oxide, calcium	
suspended/emulsified in the	carbonates etc.	
base.		
They are soft semisolid	They are very thick and stiff.	
preparations.		
They are greasier.	They are less greasy.	
They are simply applied on the	They are generally applied with	
skin.	to the spatula or spread on lint.	
They are used as protective or	They form a protective coating	
emollient for the skin.	area where it is applied.	

16. Which is an example of absorption base (a) Macrogol (b) Coconut oil (c) PEG (d) Wool fat

16. Which is an example of absorption base (a) Macrogol (b) Coconut oil (c) PEG (d) Wool fat

Ointment bases

Ointment Bases	Properties	Examples
Oleagenous bases	Occlusive, hydrophobic,	White petrolatum (Soft
	greasy, non-washable.	paraffin), Hard paraffin,
		Liquid paraffin
Absorption bases	Occlusive, Water absorbent,	Wool fat, Hydrous wool
	greasy, anhydrous.	fat (lanolin), Wool
		alcohol, Bees wax
Emulsion bases		
W/O type emulsion	Occlusive, hydrous,	Lanolin, cold cream
bases	hydrophilic, greasy, non-	
	washable.	
O/W type emulsion	Non-occlusive, can be diluted	Hydrophilic ointment
bases	with water, non-greasy,	
	washable.	
Water soluble bases	Water-soluble, washable,	Polyethylene glycol
	non-greasy, non-occlusive,	(Macrogals, Carbowax)
	lipid free.	

17. Which of the following is an example of an ointment made by chemical reaction
(a) Ammoniated mercury ointment
(b) Calamine ointment
(c) Salicylic acid ointment
(d) Iodine ointment

17. Which of the following is an example of an ointment made by chemical reaction
(a) Ammoniated mercury ointment
(b) Calamine ointment
(c) Salicylic acid ointment
(d) Iodine ointment

Ointment made by chemical reaction

Certain chemical reactions are involved in the preparation of several ointments. For example, iodine ointment. Iodine may be present in free form or in combined form with the ointment base.

18. Liquid paraffin is of (a) Animal origin (b) Mineral origin (c) Synthetic origin (d) Semisynthetic origin

18. Liquid paraffin is of (a) Animal origin (b) Mineral origin (c) Synthetic origin (d) Semisynthetic origin

Liquid paraffin

- It consists of a mixture of liquid hydrocarbons and obtained from petroleum by distillation. It is also known as white mineral oil or liquid petroleum.
- It is a colourless, odourless, tasteless and transparent oily liquid.
- It is soluble in ether and chloroform but insoluble in water and alcohol. It is used along with hard paraffin and soft paraffin to get a desired consistency of the ointment.

19. The base used to stiffen the ointment is (a) Hard paraffin (b) Wool fat (c) Macrogol (d) Wool Alcohol

19. The base used to stiffen the ointment is (a) Hard paraffin (b) Wool fat (c) Macrogol (d) Wool Alcohol

Hard paraffin

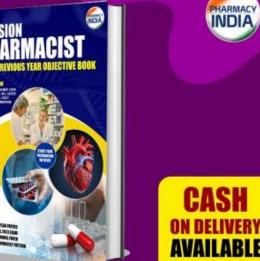
 It is a purified mixture of solid hydrocarbons obtained from petrolatum. It is colourless or white translucent, odour- less, tasteless wax like substance. It is used to harden or soften the ointment base.

20. Methyl paraben or propyl paraben may be used in the preparation of ointment as
(a) A preservative
(b) An emulsifier
(c) A humectant
(d) A chelating agent

20. Methyl paraben or propyl paraben may be used in the preparation of ointment as
(a) A preservative
(b) An emulsifier
(c) A humectant
(d) A chelating agent

Additives used in Ointments

- Methyl paraben or propyl paraben may be incorporated as preservative to prevent the microbial growth in ointment during its storage for a long period.
- To prevent the loss of moisture from the preparation, the humectant such as, glycerin, propylene glycol or sorbitol may be added.
- Perfumes may also be incorporated to the ointments to give pleasant odour to it. Sometimes a perfume blend is added to the ointment to produce an ointment having a required pleasant odour.
- Antioxidants are needed to be incorporated with ointments, whenever there are chances of oxidative decomposition of the ingredients.
- Chelating agents can be included to prevent the catalytic oxidative degradation of trace elements.



PREPARING FOR PHARMACIST EXAM

MISSION PHARMACIST PREVIOUS YEAR OBJECTIVE BOOK

Best PYQ Book for Question Practice COD Available

Order करने के लिए बैनर पर क्लिक करें

DAILY UPDATES जुडि़ए PHARMACY INDIA के साथ.....

WHATSAPP & TELEGRAM SE JUDNE KE LIYE ICONS PAR CLICK KARE

Mobile Phone Par Click karein

21. Which is an example of water soluble base (a) Coconut oil (b) Petrolatum (c) Wool fat (d) PEG

21. Which is an example of water soluble base (a) Coconut oil (b) Petrolatum (c) Wool fat (d) PEG

Ointment bases

Ointment Bases	Properties	Examples
Oleagenous bases	Occlusive, hydrophobic,	White petrolatum (Soft
	greasy, non-washable.	paraffin), Hard paraffin,
		Liquid paraffin
Absorption bases	Occlusive, Water absorbent,	Wool fat, Hydrous wool
	greasy, anhydrous.	fat (lanolin), Wool
		alcohol, Bees wax
Emulsion bases		
W/O type emulsion	Occlusive, hydrous,	Lanolin, cold cream
bases	hydrophilic, greasy, non-	
	washable.	
O/W type emulsion	Non-occlusive, can be diluted	Hydrophilic ointment
bases	with water, non-greasy,	
	washable.	
Water soluble bases	Water-soluble, washable,	Polyethylene glycol
	non-greasy, non-occlusive,	(Macrogals, Carbowax)
	lipid free.	

22. Fusion method is used for the preparation of (a) Ointment (b) Emulsion (c) Suspension (d) Aerosol

22. Fusion method is used for the preparation of
(a) Ointment
(b) Emulsion
(c) Suspension
(d) Aerosol

Preparation Methods for Ointments

- Trituration method
- Fusion method
- Chemical reaction method
- Emulsification method

23. Along with benzoic acid Westfield ointment contains

(a) 6% salicylic acid
(b) 2% salicylic acid
(c) 4% salicylic acid
(d) 3% salicylic acid

23. Along with benzoic acid Westfield ointment contains

(a) 6% salicylic acid
(b) 2% salicylic acid
(c) 4% salicylic acid
(d) 3% salicylic acid

Prepare and dispense 100 g of compound benzoic acid ointment (Whitfield's ointment).

- Benzoic acid, in fine powder 6g
- Salicylic acid, in fine powder 3g
- Emulsifying ointment 91g

Direction: Apply the ointment to the affected area.

24. Lanolin is (a) Bees wax (b) Wool fat (c) Paraffin wax (d) Borax

24. Lanolin is
(a) Bees wax
(b) Wool fat
(c) Paraffin wax
(d) Borax

Ointment bases

Ointment Bases	Properties	Examples
Oleagenous bases	Occlusive, hydrophobic,	White petrolatum (Soft
	greasy, non-washable.	paraffin), Hard paraffin,
		Liquid paraffin
Absorption bases	Occlusive, Water absorbent,	Wool fat, Hydrous wool
	greasy, anhydrous.	fat (lanolin), Wool
		alcohol, Bees wax
Emulsion bases		
W/O type emulsion	Occlusive, hydrous,	Lanolin, cold cream
bases	hydrophilic, greasy, non-	
	washable.	
O/W type emulsion	Non-occlusive, can be diluted	Hydrophilic ointment
bases	with water, non-greasy,	
	washable.	
Water soluble bases	Water-soluble, washable,	Polyethylene glycol
	non-greasy, non-occlusive,	(Macrogals, Carbowax)
	lipid free.	

25. The ointment base of mineral origin is (a) Olive oil A physician requests a (b) Cotton seed oil (c) Castor oil (d) Paraffin wax

25. The ointment base of mineral origin is (a) Olive oil A physician requests a (b) Cotton seed oil (c) Castor oil (d) Paraffin wax

Liquid paraffin

- It consists of a mixture of liquid hydrocarbons and obtained from petroleum by distillation. It is also known as white mineral oil or liquid petroleum.
- It is a colourless, odourless, tasteless and transparent oily liquid.
- It is soluble in ether and chloroform but insoluble in water and alcohol. It is used along with hard paraffin and soft paraffin to get a desired consistency of the ointment.

26. A physician requests a 0.1 steroidal cream that is commercially available as a 0.25strength in a vanishing cream base. Which one of the following ointment bases is the best choice as a diluent in this situation (a) Hydrophilic ointment (b) Vaseline

(c) Lanolin(d) Cold cream

26. A physician requests a 0.1 steroidal cream that is commercially available as a 0.25strength in a vanishing cream base. Which one of the following ointment bases is the best choice as a diluent in this situation (a) Hydrophilic ointment (b) Vaseline (c) Lanolin (d) Cold cream

Ointment bases

Ointment Bases	Properties	Examples
Oleagenous bases	Occlusive, hydrophobic,	White petrolatum (Soft
	greasy, non-washable.	paraffin), Hard paraffin,
		Liquid paraffin
Absorption bases	Occlusive, Water absorbent,	Wool fat, Hydrous wool
	greasy, anhydrous.	fat (lanolin), Wool
		alcohol, Bees wax
Emulsion bases		
W/O type emulsion	Occlusive, hydrous,	Lanolin, cold cream
bases	hydrophilic, greasy, non-	
	washable.	
O/W type emulsion	Non-occlusive, can be diluted	Hydrophilic ointment
bases	with water, non-greasy,	
	washable.	
Water soluble bases	Water-soluble, washable,	Polyethylene glycol
	non-greasy, non-occlusive,	(Macrogals, Carbowax)
	lipid free.	

27. Example of neutral mixture is
(a) Ointment
(b) Suspensions
(c) Emulsions
(d) None of these

27. Example of neutral mixture is
(a) Ointment
(b) Suspensions
(c) Emulsions
(d) None of these

Ointment

- Ointments are homogeneous, semi-solid preparations intended for external application to the skin or mucous membranes.
- They are used as emollients or for the application of active ingredients to the skin for protective, therapeutic, or prophylactic purposes and where a degree of occlusion is desired.
- It is an example of neutral mixture.

28. In Non-staining iodine ointment, which one of these ingredients is added to bind lodine
(a) Arachis oil
(b) Yellow soft paraffin
(c) Methyl salicylate
(d) None of these

28. In Non-staining iodine ointment, which one of these ingredients is added to bind lodine
(a) Arachis oil
(b) Yellow soft paraffin
(c) Methyl salicylate
(d) None of these

Prepare and dispense 50 g of iodine ointment, non staining B.P.C.

- Iodine 50 g
- Arachis oil 150 ml
- Yellow soft paraffin a sufficient quantity Make an ointment.

Direction: To be rubbed on the affected part three times a day

29. These ointments are intended to release the medicament that pass through the skin and **produce systemic effects** (a) Epidermic ointment (b) Endodermic ointment (c) Diadermic ointment (d) Keratolytic ointment

29. These ointments are intended to release the medicament that pass through the skin and **produce systemic effects** (a) Epidermic ointment (b) Endodermic ointment (c) Diadermic ointment (d) Keratolytic ointment

Ointment classified according to properties based on penetration

(i) Epidermic ointments: These ointments are meant for action on epidermis and produce local effect. They are not absorbed. These types of ointments are mainly used as protectives, antiseptic- tics, local anti-infectives and parasiticides.

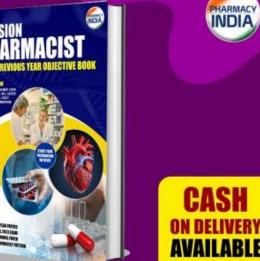
(ii) Endodermic ointments: These ointments are meant for action on deeper layers of cutaneous tissues. They are partially absorbed and act as emollients, stimulants and local irritants.

(iii) Diadermic ointments: These ointments are meant for deep penetration and release the medicaments that pass through the skin and produce systemic effects.

30. Light liquid paraffin IP and light paraffin is differentiated by their
(a) Flash point
(b) Appearance
(c) Pour pint
(d) Odour

30. Light liquid paraffin IP and light paraffin is differentiated by their
(a) Flash point
(b) Appearance
(c) Pour pint
(d) Odour

Light liquid paraffin IP and light paraffin is differentiated by their flash point.



PREPARING FOR PHARMACIST EXAM

MISSION PHARMACIST PREVIOUS YEAR OBJECTIVE BOOK

Best PYQ Book for Question Practice COD Available

Order करने के लिए बैनर पर क्लिक करें

DAILY UPDATES जुडि़ए PHARMACY INDIA के साथ.....

WHATSAPP & TELEGRAM SE JUDNE KE LIYE ICONS PAR CLICK KARE

Mobile Phone Par Click karein

31. Dimethicone is the other name of
(a) Titanium dioxide
(b) Calamine
(c) Zinc stearate
(d) Silicon oil

31. Dimethicone is the other name of
(a) Titanium dioxide
(b) Calamine
(c) Zinc stearate
(d) Silicon oil

Dimethicone is a silicone oil that is also known as polydimethylsiloxane (PDMS).
It has viscoelastic properties.

32. Ceresin is

(a) Synchro waxes
(b) Ozokerite & Paraffin wax
(c) Synchro waxes & ozokerite
(d) Ozokerite only

32. Ceresin is (a) Synchro waxes (b) Ozokerite & Paraffin wax (c) Synchro waxes & ozokerite (d) Ozokerite only

 Ceresin wax is a purified form of ozokerite, a naturally occurring mineral wax. It's a waxy mixture of hydrocarbons that's similar to paraffin wax, but harder and with a higher melting point.

33. Dimethyl sulfoxide acts as penetration enhancer for topical formulations by
(a) Increasing solubility
(b) Denaturing proteins
(c) Increasing trans epidermal
(d) Altering solvent nature of membrane

33. Dimethyl sulfoxide acts as penetration enhancer for topical formulations by
(a) Increasing solubility
(b) Denaturing proteins
(c) Increasing trans epidermal
(d) Altering solvent nature of membrane

- Dimethyl sulfoxide (DMSO) is a solvent that can enhance the skin's permeability and act as a penetration enhancer for topical drugs and other substances.
- It can increase the diffusion of substances through the stratum corneum, promote transport into local blood vessels, and trigger the formation of deposits in the dermis.

34. Imbibition is used for

(a) Size reduction of substance
(b) Moistening of substance
(c) Size separation of substance
(d) Packaging of substance

34. Imbibition is used for (a) Size reduction of substance (b) Moistening of substance (c) Size separation of substance (d) Packaging of substance

- Drugs are stored in a beaker, and menstruum (solvent) is added up to the level of the drug and then kept for 6–7 h or a whole night.
- As a result, drugs absorb the menstruum and swell up. This step is known as the imbibition of the drug.

35. Indicate the use of Lanolin
(a) Emollient
(b) Colouring agent
(c) Viscosity Controller
(d) Preservative

35. Indicate the use of Lanolin
(a) Emollient
(b) Colouring agent
(c) Viscosity Controller
(d) Preservative

Hydrous wool fat :

- It is the purified fat like substance obtained from wool of sheep.
- It is also known as lanolin. It is insoluble in water but soluble in ether and chloroform.
- Hydrous wool fat is a mixture of 70% w/w wool fat and 30% w/w purified water.
- It is used alone as emollient and as an ingredient of several other ointments.

36. Which of the following is TRUE about Hard paraffin

(a) It consists of a mixture of liquid hydrocarbons, obtained from petroleum by distillation (b) It may contain small traces of bleaching agent which are generally left over after bleaching (c) It is a purified mixture of solid hydrocarbons obtained from petrolatum (d) It is a purified mixture of semisolid hydrocarbons

obtained from petroleum

36. Which of the following is TRUE about Hard paraffin

(a) It consists of a mixture of liquid hydrocarbons, obtained from petroleum by distillation (b) It may contain small traces of bleaching agent which are generally left over after bleaching (c) It is a purified mixture of solid hydrocarbons obtained from petrolatum (d) It is a purified mixture of semisolid hydrocarbons obtained from petroleum

Hard paraffin

 It is a purified mixture of solid hydrocarbons obtained from petrolatum. It is colourless or white translucent, odour- less, tasteless wax like substance. It is used to harden or soften the ointment base.

37. In the preparation of cold creams, bases generally used are (a) Oil in water type bases (b) Hydrocarbon bases (c) Water in oil type bases (d) None of these

37. In the preparation of cold creams, bases generally used are (a) Oil in water type bases (b) Hydrocarbon bases (c) Water in oil type bases (d) None of these

According to emulsion type: 1. W/O creams Eg: Cold cream 2. O/W creams Eg: Vanishing cream

38. Creams are
(a) Emulsions
(b) Suspensions
(c) Ointments
(d) Pastes

38. Creams are
(a) Emulsions
(b) Suspensions
(c) Ointments
(d) Pastes

Creams are defined as

- "semisolid emulsions of either oil in water or water in oil type."
- "semisolid emulsions usually medicated, intended for external application."

39. In the preparation of vanishing creams, which types of bases are used generally
(a) Absorption bases
(b) Water removable bases
(c) Hydrocarbon bases
(d) None of these

39. In the preparation of vanishing creams, which types of bases are used generally
(a) Absorption bases
(b) Water removable bases
(c) Hydrocarbon bases
(d) None of these

According to emulsion type: 1. W/O creams Eg: Cold cream 2. O/W creams Eg: Vanishing cream

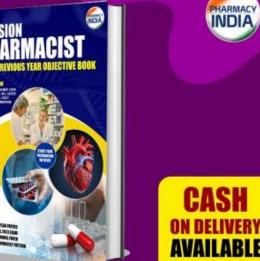
40. Vanishing cream and cold cream are example of

(a) Oil in water and water in oil emulsion(b) Water in oil and oil in water emulsion(c) Multiple and oil in water emulsion(d) Multiple and microemulsion

40. Vanishing cream and cold cream are example of

(a) Oil in water and water in oil emulsion(b) Water in oil and oil in water emulsion(c) Multiple and oil in water emulsion(d) Multiple and microemulsion

According to emulsion type: 1. W/O creams Eg: Cold cream 2. O/W creams Eg: Vanishing cream



PREPARING FOR PHARMACIST EXAM

MISSION PHARMACIST PREVIOUS YEAR OBJECTIVE BOOK

Best PYQ Book for Question Practice COD Available

Order करने के लिए बैनर पर क्लिक करें

PHARMACIST ONLINE LIVE CLASSES

JULY BATCH

ON STUDENTS DEMAND CLASSES EXTEND

MISSION

LIVE CLASSES STARTING FROM -22ND JULY 2024 DSSSB, RRB, SEPOY, AIIMS, CGHS ESIC, JSSC & OSSSC

Course check करने के लिए बैनर पर क्लिक करें

Connect for admission related queries

DAILY UPDATES जुडि़ए PHARMACY INDIA के साथ.....

WHATSAPP & TELEGRAM SE JUDNE KE LIYE ICONS PAR CLICK KARE

Mobile Phone Par Click karein