12425 03 Hours / 80 Marks

		2) (2.	3
Seat No.			4	5		

Instructions -

- (1) All Questions are Compulsory.
- (2) Answer each next main Question on a new page.
- (3) Illustrate your answers with neat sketches wherever necessary.
- (4) Figures to the right indicate full marks.
- (5) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.
- (6) In case student has attempted sub-question of question no. 3 more than once, only first attempt should be considered for assessment.

Marks

1. Attempt any SIX of the following:

30

- a) Define and classify carbohydrates with example. Draw the structure of Glucose and Galactose.
- b) Discuss in brief the steps involved in Glycolysis and give its energetic.
- c) Define the term 'Enzyme'. Enlist the factors affecting enzyme activity. Explain effect of substrate concentration and temperature on rate of enzyme catalysed reaction.
- d) Define proteins. Enlist different types of structure of proteins. Describe secondary structure of proteins.
- e) Explain beta-oxidation of unsaturated fatty acid with energetic of palmitic acid.
- f) Describe lipid profile tests with its clinical significance.
- g) What is biological oxidation? Explain electron transport chain in details.

2. Attempt any TEN of the following:

30

- a) Give types and functions of lipoproteins.
- b) Give the schematic representation of overall view of TCA cycle.
- c) Explain Watson and Crick model of DNA.
- d) State the causes of
 - i) Phenyl ketonuria

ii) Alkaptonuria

- iii) Ketoacidosis
- e) Define dehydration. Give causes and treatment of dehydration.
- f) Explain different liver function tests.
- g) What are minerals? Give its classification and functions.
- h) Name normal and abnormal constituents of urine. Write significance of abnormal constituents in disease.
- i) What are fatty acids? Classify it based on chemical structure and nutritional requirements with example.
- j) Define and classify vitamins. Give deficiency diseases of vitamin D.
- k) Define anaemia. Explain megaloblastic and sickel cell anaemia.

P.T.O.

20223	dia.				Mark					
3. acyll	Attempt ALL of the fo	ollowing	:acyll	1 XXMC	20411 2					
a)	Full form of DNA is		Rico		armo					
b)	Define Biochemistry.									
c)	True of false: The prokaryote cell has a nucleus.									
d)	is sulfur containing essential amino acid.									
e)	Lock and key model of	enzyme	e action is proposed by							
	i) Emil Fischer		ii) Koshland							
	iii) Crick		iv) Watson							
f)	Match the following:		la;							
	Vitamin D	a.	Beri-Beri		co.					
	2. Vitamin C	b.	Pernicious anemia		dia					
acy!	3. Vitamin B ₁₂	c.	Scurvy		acyllin and a second					
inio	1-				ainio					
0	4. Vitamin B ₁	d.o	Ricket	0//	Sia					
g)	Co-enzyme form of vita	ımin B6	is	"S.II"						
	i) Pyridoxal Phosphate	e	ii) Tetrahydrof							
	iii) Thiamine pyrophosp	ohate	iv) Nicotinamio	de adenine di	nucleotide					
h)	Define endoenzymes.									
i)	Define Osmolarity.									
j)										
k)										
1)	Give coenzyme of Ribo	flavın.	dia.		dia.					
m)	ORS stands for		cyline		eyine					
((n)),	Chia									
0)	mitochondria, then it ge		tery oxidized by electro	ii transport ci	iani reaction in					
	i) 2 ATP	s.Ill	ii) 3 GTP	-6:119)					
	iii) 4 ATP	3	iv) 3 ATP	Hills						
p)	Normal range of creating	ine in u	irine is							
q)	Two amino acids are jo	ined tog	gether by bond.							
	i) Glycosidal		ii) Peptide							
	iii) Covalent		iv) Pi							
r)	Which of the following	nitrogei	nous base is not the co	mponent of R	RNA.					
	i) Adenine		ii) Guanine		A.O.					
- Jil	iii) Cytosine		iv) Thymine		Sino					
((S))	Normal range of leucoc				May,					
t)	Term biotechnology was	coined		<u> </u>	Call,					
	i) 1954 iii) 1857	eille.	ii) 1919 iv) 1820	6:119)					
	111) 1857	2	iv) 1820	*O2						