

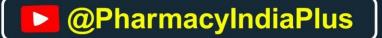
Instrumental Methods of Analysis

B.PHARM 7TH SEM

LONG QUESTIONS

PDF

CLICK ON BANNER TO WATCH VIDEO



INSTRUMENTAL METHODS OF ANALYSIS B.PHARM | SEMESTER 7

LONG QUESTIONS (10 x2)

DOWNLOAD "PHARMACY INDIA" MOBILE APP

Mobile Phone Par Click karein

DAILY UPDATES 可导中HARMACY INDIA 中日本中田平山

WHATSAPP & TELEGRAM SE JUDNE KE LIYE ICONS PAR CLICK KARE

1. Describe the principle, procedure for development and application of paper chromatography.

Principle of Paper Chromatography:

Paper chromatography is a type of partition chromatography used for separating and identifying mixtures that are or can be colored, especially pigments.

- The technique works on the principle of partition between two phases:
 - Stationary phase: A sheet of paper (typically cellulose) that holds water in its pores.
 - Mobile phase: A solvent or mixture of solvents that moves over the paper via capillary action.
- Components of the mixture partition between the stationary phase (water in the paper)
 and the mobile phase solubility and affinity for each phase.
- Components with higher solubility in the solvent and lower affinity for the paper move faster, and those with greater affinity for the stationary phase move slower.

2. Procedure of Paper Chromatography:

Materials Required:

- Chromatography paper (e.g., Whatman filter paper)
- Solvent or solvent mixture (mobile phase)
- Sample solution
- Capillary tubes or micropipette
- Beaker or chromatography chamber
- Pencil and ruler
- Glass rod or support

Steps:

Preparation of Chromatography Paper:

Draw a pencil line about 2 cm from the bottom of the paper. This is the origin line.

Spot a small amount of the sample mixture on the origin line using a capillary tube or micropipette. Allow it to dry and repeat for concentration if needed.

Preparation of Solvent System:

- Prepare a suitable mobile phase (e.g., a mixture of water and alcohol or other solvents depending on the sample).
- Pour the solvent into the chromatography chamber to a depth below the pencil line on the paper.

Development of Chromatogram:

- Place the paper vertically into the chamber so that the solvent touches the bottom edge but not the sample spot.
- 。Close the chamber to saturate it with solvent vapor.
- 。 Allow the solvent to rise up the paper by capillary action.

1. Drying and Visualization:

- When the solvent front reaches near the top, remove the paper and mark the solvent front immediately with a pencil.
- Dry the paper.
- Visualize the spots:
 - Colored compounds are visible directly.
 - Colorless compounds may require spraying with reagents (e.g., ninhydrin for amino acids) or viewing under UV light.

2. Calculation of Rf Value:

Rf=Distance traveled by the solvent front/Distance traveled by the solute

2. Explain principle, instrumentation, and application of flame photometry.

Principle of Flame Photometry (Flame Atomic Emission Spectroscopy):

Flame photometry is based on the principle of atomic emission spectroscopy, used primarily for quantitative analysis of alkali and alkaline earth metals (e.g., Na, K, Ca, Li).

- When a sample solution is sprayed into a flame, metal ions in the sample get excited
 due to the flame's thermal energy.
- These excited atoms emit light of characteristic wavelengths as they return to their ground state.
- The intensity of emitted light is directly proportional to the concentration of the metal ion in the sample.

2. Instrumentation of Flame Photometer:

1. Sample Introduction System:

- Nebulizer converts the liquid sample into a fine mist.
- The mist is carried into the flame by a carrier gas (usually air-acetylene or air-propane).

2. Flame (Atomizer):

- Provides the energy required to excite the atoms.
- Common flames:
 - Air-Acetylene: for Na, K, Ca, Li
 - Air-Propane: safer but cooler flame

3. Optical System:

- Includes:
 - Lens/slits to focus the emitted light
 - Monochromator or optical filters to select the specific wavelength corresponding to the metal ion.

4. Detector:

 Usually a photocell or photomultiplier tube that detects the light intensity and converts it to an electrical signal.

Readout Device:

- The signal is displayed as:
 - Analog meter
- Digital display

Applications of Flame Photometry:

- Clinical Applications
- Agricultural and Soil Analysis
- Food and Beverage Industry
- Pharmaceutical Industry

Download Lecture Notes - www.pharmacyindia.in

3. Differentiate between Atomic absorption and atomic emission. Describe various interferences involved in Atomic Absorption Spectroscopy.

Aspect	Atomic Absorption Spectroscopy (AAS)	Atomic Emission Spectroscopy (AES)
Basic Principle	Measures light absorbed by atoms in ground state.	Measures light emitted by atoms in excited state.
Source of Energy	External light source (usually a hollow cathode lamp).	High-energy source (e.g., flame, plasma) excites the atoms.
Detection	Detects decrease in intensity of light (absorption).	Detects emitted light from excited atoms.
State of Atoms	Atoms absorb energy and move from ground to excited state.	Atoms emit energy while returning from excited to ground state.
Spectral Line Used	Specific wavelength of the element being analyzed.	Emission spectrum characteristic of the element.
Sensitivity	Generally more sensitive for trace analysis.	Less sensitive than AAS for some elements.
Common Use	Trace metal analysis in samples like water, blood, soil, etc.	Emission analysis of alkali and alkaline earth metals.
Instrument Example	Flame AAS, Graphite Furnace AAS	Flame Photometer, Inductively Coupled Plasma- Emission (ICP-OES)

Interferences in Atomic Absorption Spectroscopy (AAS):

A. Spectral Interference:

- Cause: Overlapping of absorption lines from different elements or molecular bands.
- Effect: False readings due to absorption by species other than the analyte.
- . Solution:
 - Use a high-resolution monochromator.
 - Choose an alternate absorption line or background correction methods.

B. Chemical Interference:

- Cause: Formation of stable compounds (e.g., oxides, sulfates) that do not atomize efficiently in the flame.
- Effect: Reduces free atom population, lowering absorbance.

. Solution:

- Add releasing agents (e.g., La³⁺ for calcium to prevent phosphate interference).
- Use higher temperature flames to break down stable compounds.
- Add protective agents or ionization buffers.

C. Ionization Interference:

- Cause: At high temperatures, atoms may ionize instead of staying neutral.
- Effect: Reduces the number of neutral atoms available to absorb radiation.

. Solution:

- Add ionization suppressors like potassium or cesium, which preferentially ionize.
- Use lower flame temperatures if possible.

D. Matrix Interference (Physical Interference):

- Cause: Differences in viscosity, surface tension, or density between the sample and standards.
- Effect: Affects nebulization, aspiration rate, and atomization efficiency.
- . Solution:
 - Use matrix-matched standards or standard addition method.
 - Dilute viscous samples or modify sample preparation.

3. Explain the principle, types, and pharmaceutical applications of Potentiometry.

Principle:

Potentiometry is based on the measurement of potential (voltage) of an electrochemical cell without drawing significant current.

The measured potential is related to the concentration of the analyte by the Nernst equation:

E=E0 + 2.303RT / nF log[C]

Where:

- E = Electrode potential
- P= Standard electrode potential
- R = Gas constant (8.314 $J \cdot K^{-1} \cdot mol^{-1}$)
- T = Temperature (K)
- n = Number of electrons involved
- F = Faraday's constant (96,500 C⋅mol⁻¹)
- C = Concentration of ionic species

In potentiometric titrations, instead of using chemical indicators (color change), the end point is determined by a sharp change in potential.

2. Types of Electrodes Used in Potentiometry

A. Reference Electrodes

These provide a constant, stable potential against which changes are measured.

- Standard Hydrogen Electrode (SHE) primary reference, rarely used in practice.
- Calomel Electrode (Hg/Hg₂Cl₂) widely used.
- Silver-Silver Chloride Electrode (Ag/AgCl) stable and common.

B. Indicator (Measuring) Electrodes

These respond to the activity of specific ions in the solution.

- Glass Electrode for H⁺ ion concentration (pH measurement).
- Ion-Selective Electrodes (ISEs) selective for Ca²⁺, Na⁺, K⁺, F⁻, Cl⁻ etc.
- Redox Electrodes for oxidation-reduction titrations.

3. Instrumentation of Potentiometer

- Reference Electrode stable potential.
- Indicator Electrode responds to analyte.
- High Resistance Voltmeter measures potential difference without drawing current.
- Titration Cell where titration is performed.
- Computer/Recorder plots potential vs volume of titrant.
- End-point is identified by the inflection point on the titration curve.

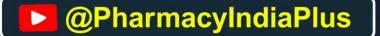
4. Types of Potentiometric Titrations

- Acid

 Base Titrations determination of strong/weak acids or bases using glass electrode.
- II. Redox Titrations e.g., Fe²⁺ vs KMnO₄, involving electron transfer.
- III. Precipitation Titrations e.g., Cl⁻ with AgNO₃.
- IV. Complexometric Titrations e.g., EDTA titration for Ca²⁺, Mg²⁺.
- V. Non-aqueous Titrations useful for drugs insoluble in water.

1. Pharmaceutical Applications

- Drug Assays:
 - ✓ Alkaloids (e.g., atropine, ephedrine, quinine).
 - ✓ Sulfonamides, barbiturates, aspirin, and other APIs.
- pKa Determination: Helps in drug ionization and solubility studies.



Explain the principle, instrumentation, and pharmaceutical applications of X-Ray Diffraction (XRD).

Principle of X-Ray Diffraction (XRD)

- ✓ XRD is based on the interaction of X-rays with crystalline substances.
- ✓ When a crystal is irradiated with monochromatic X-rays, the atoms in the lattice planes diffract the X-rays in specific directions.
- ✓ The condition for constructive interference is given by Bragg's Law:

 $n \lambda = 2d \sin \theta$

Where:

n = Order of reflection (integer)

k= Wavelength of incident X-rays

d = Distance between crystal lattice planes

θ= Angle of incidence

Thus, by measuring and intensity of diffracted beams, the arrangement of atoms in a crystal can be determined.

<u>Instrumentation of XRD</u>

A typical powder X-ray diffractometer consists of:

(i) X-Ray Source

- ✓ Produces X-rays, usually via an X-ray tube (Cu, Mo targets).
- ✓ Cu Kαradiation (\(\) = 1.5418 Å) is commonly used.

(ii) Collimator/Monochromator

✓ Ensures that the X-rays are parallel and monochromatic before striking the sample.

(iii) Sample Holder

- ✓ Holds the crystalline sample in the path of X-rays.
- ✓ Powdered solid samples are most commonly analyzed.

Monochromator:

Filters the X-rays to produce monochromatic radiation for accurate results.

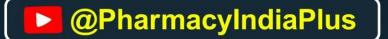
Goniometer:

- Precisely rotates the sample and detector at defined angles θand 2θ).
- Helps in scanning across different diffraction angles.

Detector:

- Usually scintillation or proportional counters.
- Detects diffracted X-rays and converts them into electronic signals.

Pharmaceutical Applications of XRD:


XRD plays a **crucial role in drug development**, **formulation**, **and quality control**. Key uses include:

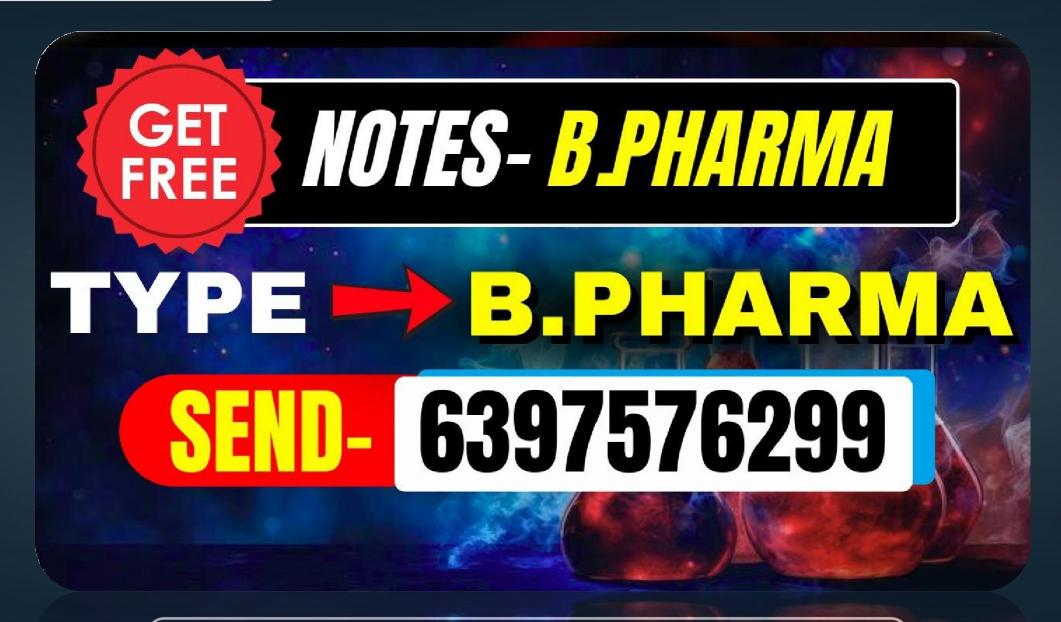
1. Polymorphism Identification:

- Many drugs exist in different polymorphic forms with different solubility and bioavailability.
- XRD helps to identify and differentiate these polymorphs (e.g., Ritonavir, Carbamazepine).

2. Crystallinity vs. Amorphous Content:

- Differentiates between crystalline and amorphous forms.
- Amorphous drugs often have higher solubility but less stability.

FOR MORE CLASSES & VIDEOS GUPHARMACY INDIA के साथ.....


INSTAGRAM & YOUTUBE SE JUDNE KE LIYE OR SCAN KARE

