BODMAS

WhatsApp D. Pharma Group Join Now
Telegram D. Pharma Group Join Now
Telegram Group Latest Pharma Jobs Join Now
Telegram B. Pharma Group Join Now
Telegram Medicine Update Group Join Now
WhatsApp B. Pharma/ GPAT Channel Join Now
Spread the love

1.  (c)

First, calculate the value on the left side:

7059−2350+1936=6645

Now, divide by 50:

6645/50=132.9

2. (c)  7/4+1.4142 = 7/ 5.4142 ≈ 1.2929 

3. (d)  786 × 964 = 757704

4. (d)

First, calculate each term:

999 + 588 = 1587,       999 − 588 = 411 

Now:

15872+4112 = 2510169 + 168921 = 2679090 

Now divide by 999 × 588 = 587412 

2679090/ 587412≈4.56≈4

5. (b) 

First, calculate each term:

238 + 131 = 369,     238 − 131 = 107

Now:

3692 + 1072 = 136161 + 11449 = 147610 

And:

2382 + 1312 = 56644 + 17161 = 73805

Now divide:

147610/ 73805 = 2 

6. (d)  First, calculate:

999 × 494 = 493506

Now: 997 × 99 = 98703 

Now add: 1/5 + 98703 = 98703.2

Now divide by 4: 98703.2/4 = 24675.8  

7. (d) 

First, calculate 

x = √3 + √2 ,    1/x = √3 – √2/1

Now: x +1/x = (√3 + √2) + ( √3 – √2) = 2 √3

Formula Used:
a2 + b2 + c2 – 3abc = 1/2(a+b+c) [(a-b)2 + (b-c)2 + (c-a)2
Calculation:
a + b + c – 3abc = 1/2(225 + 226 +227) [(225-226)2 +(226-227)2 + (227-225)2]
= 1/2 × 678 × (1 + 1 + 4)
= 1/2 × 678 × 6
= 2034

9.  (a)

First, calculate each term:

(0.96)3 = 0.884736,           (0.1)3 = 0.001   

Now:

0.884736−0.001/ 0.9216 + 0.096 + 0.01 = 0.883736/ 1.0276 ≈ 0.86 

10. (a)

First, calculate each term:

√0.0001 = 0.01,      √1000000 = 1000

√0.125 ≈ 0.3536,    √0.008≈0.08944           

Now:

0.01 × 1000/ 3 × 0.3536 × 2× 0.08944 =10/ 0.633 ≈ 15.8 

11. (d)

First, divide 60 by 0.5:

60 ÷ 0.5 = 12060 ÷ 0.5 = 120

Now multiply by 3.5:

3.5 × 120 = 4203.5 × 120 = 420

12. (d)

Start from the innermost parentheses: 12 − 9 = 3

Now simplify the next part: 15−3=12

Next: 18−12=6

Then: 9 − 6 = 3

Finally: 6 − 3 = 3

13. (c)

The least common denominator is 12. Convert each fraction:

3/ 23 = 128/ 12,  23/4 = 69/ 12,   11/ 2 = 66/ 12

Now add the fractions:

128/ 12 + 69/ 12 + 66/ 12 = 263/ 12

This is equivalent to:

21 × (11/ 12) = 711/12

Convert the mixed number to an improper fraction:

Now multiply:

Add 13/ 8 to 4/ 9 using a common denominator of 72:

Now add:

First, multiply 10.8 by 5.5:

Now multiply by 84:

16. (a)

Step 1: Rewrite the expression using powers of 4
We know that:
– 4=41
– 64=43

Thus, we can rewrite 64 as 43.

The expression becomes:
(45)5×(43)8÷(43) = (43)?

Step 2: Simplify the left side
Using the power of a power property (am)n=amn, we can simplify:
(45)5=455=425
(43)8=438=424

Now, substituting these back into the expression gives:
425×424÷43

Step 3: Combine the powers
Using the property am×an=am+n:
425+24÷43=449÷43

Step 4: Simplify the division
Using the property am÷an=amn:
4493=446

Step 5: Rewrite in terms of 64
Now we need to express 446 in terms of 64:
446 =(43)? since 64=43

Step 6: Set the exponents equal
We know:
446=(43)?446=43x
Thus, we can set the exponents equal to each other:
46=3x

Step 7: Solve for x
To find x, divide both sides by 3:
x=46/3 = 15.33

17. (a)

First, subtract: 8648 − 7652 = 996 

Now solve for : 996 ÷ 40 = 24.9

18. (a)

First, subtract: 683.46 − 227.39 = 456.07

Now subtract: 456.07 − 341.85 = 114.22

19. (d)

First, multiply 104/ 14 × 52/ 19:

(104/ 14) × (52/ 19) =5408/ 266 = 1352/ 67

Now add 13/ 63:

(13/ 63) + (1352/67) = 18/ 171

(5568 ÷ 87)1/3 + (72 × 2)1/2 = (?)1/2 
 
⇒ (64)1/3 + (144)1/2 = (?)1/2

⇒ ((4)3)1/3 + ((12)2)1/2 = (?)1/2

⇒ 4 + 12 = (?)1/2
 
21. (d)
(?)2 = √132 + 28 / 4 – (3)3 + 107
= √169 + 7 – 27 + 107
= √256
= √16
= 4
 
22. (c)
The given question is,
(70 ÷ 100)? + 3 = (0.49)4 x (0.343)4 ÷ (0.2401)4
As we know that
70 ÷ 100 = 0.7
0.49 = 0.7 2
0.343 = 0.7 3
0.2401 = 0.7 4

Put these value in given question , we will get
⇒ (0.7)? + 3 = (0.72)4 x ( 0.73 )4 ÷ ( 0.74 )4
⇒ (0.7) ? + 3 = 0.7 2 x 4 x 0.7 3 x 4 ÷ 0.7 4 x 4
⇒ (0.7) ? + 3 = 0.7 8 x 0.7 12 ÷ 0.7 16
Apply the law of Fractional Exponents and Laws of Exponents
(am)(an) = am+n
am÷an=am-n
Or
am/an=am – n
we will get,
⇒ (0.7)? + 3 = (0.7) 8 + 12 – 16
⇒ (0.7)? + 3 = (0.7) 20 – 16
⇒ (0.7)? + 3 = (0.7) 4
On comparing the exponents both sides, we get
+ 3 = 4
∴ = 4 – 3 = 1
 
23. (a)
photo 2024 10 04 18 13 33
= 5 – [3/4 + {5/2 – (1/2 + 7 – 6/42 )}]/2
= 5 – [3/4 + {5/2 – (1/2 + 1/42)}]/2
= 5 – [3/4 + {5/2 – (21 + 1/42)}]/2
= 5 – [3/4 + {5/2 – 22/42)}]/2
= 5 – [3/4 + {105 – 22/42)}]/2
= 5 – [3/4 + 83/42]/2 = 5 – [63 + 166/84]/2
= 5 – 229/84/2 = 420 – 229/84/2 = 191/84/2
= 191/84 x 2 = 191/168 = 123/168
 
24. (c)

25. (a)

Numerator: 0.53 = 0.125,        0.23 = 0.008,       0.33 =  0.0270

 3 × 0.5 × 0.3 × 0.2 = 0.09

So, the numerator is: 0.125 + 0.008 + 0.027 − 0.09 = 0.07      

Denominator:

0.52 = 0.25,        0.22 = 0.04,       0.32 = 0.09     

0.3  × 0.2 = 0.1,     

So, the denominator is: 0.25 + 0.04 + 0.09 − 0.1 − 0.06 − 0.15 = 0.07

Thus, the fraction is: 0.07/ 0.07=1

26. (c) 

This is a perfect cube identity:

a3+b3+c3−3abc = (a+b+c) (a2+b2+c2−ab−bc−ac)

Thus, the answer simplifies to:

a+b+c=2.247 +1.730 + 1.023 =5   

27. (c)

This is a sum of cubes formula:

a3+b3/ a2−ab+b2 = a+b

Substitute, a=725 and b=371

725 + 371 = 1096

28. (b)

29. (c)

√289 – √625 ÷ √25
= √17 x 17 – √25 x 25 ÷ √5 x 5
= 17 – 25 ÷ 5 = 17 – 5 = 12

30. (c)

We know that, (a + b)2 = a2 + b2 + 2ab
= 234 + 2 x 108 = 450
(a – b)2 = a2 + b2 – 2ab
= 234 – 2 x 108 = 18
∴ (a + b)2/(a – b)2 = 450/18 = 25
⇒ [(a + b)/(a – b)]2 = 25
∴ (a + b)/(a – b) = √25 = 5

31. (b)

a2 + 1 = a
⇒ a + 1/a = 1
On squaring both sides, we get
a2 + 1/a2 + 2 = 1
On cubing both sides, we get
(a2 + 1/a2)3 = (-1)3
⇒ a6 + 1/a6 + 3a2 x 1/a2 (a2 + 1/a2) = -1
⇒ a6 + 1/a6 + 3 x (-1) = -1
Now, a6 + 1/a6 + 1 = 3
As, a12 + a6 + 1 can be written as a6 + 1/a6 + 1
∴ a12 + a6 + 1 = 3

32. (b)

Given, 0.764 x P = 1.236 x Q
⇒ Q / P = 1.236 / 0.764
Now, (Q – P) / (Q + P) = [(Q/P) – 1] / [(Q/P) + 1]
⇒ [(1.236/0.764) – 1] / [(1.236/0.764) + 1]
= (1.236 – 0.764) / (1.236 + 0.764)
= 0.472 / 2.000
= 0.236

33. (c)

∵ a + (1/b) = 1
ab + 1 = b ……(i)

Also, b + (1/c) = 1
⇒ b = 1 – (1/c) ….(ii)

From Eqs. (i) and (ii), we get
ab + 1 = 1 – (1/c)
⇒ ab = -1/c
⇒ abc = -1

34. (a)

Notice that from the given condition a+b+c=0a + b + c = 0, we can use substitutions for the terms involving sums. For example:

  • a+b=−c
  • b+c=−a
  • c+a=−b

Using these in the first term:

(a+b)/ c+(b+c)/ a+ (c+a)/ b =(−c/ c) + (−a/ a) + (−b/ b)

This simplifies to:

−1+ (−1) + (−1) = −3

Next, simplify the second part:

a/ (b+c) +b/ (c+a) +c/ (a+b)   

Again using the fact that a+b+c=0, we can substitute:

  • b+c=−a
  • c+a=−b
  • a+b=−c

This becomes:

a/ (−a) +b/(−b) + c/(−c) =−1−1−1=−3

Now multiply the results from both parts:

(−3) × (−3) = 9

35. (b)

Since a * b = a + b + a/b
∴ 12 * 4 = 12 + 4 + 12/4
= 12 + 4 + 3 = 19

36. (a)

37. (d)

x + (a/x) = 1

⇒ x2​​ + a = x….(1)

⇒ x2​​ – x = -a….(2)

Now, (x2​​ +x+a)/(x3​​ x2​​ )​ = 2x/[x(x2​​ -x)]

= 2/(-a) [From (1) and (2)]

= -2/a

38. (a)

Given equation is,
√28 – 6√3 = √3a + b
By expanding equation,
√ 1 + 27 – 6√3 = √3a + b
⇒ √(1)2 + (3√3)2 – 2 x 3√3 = ⇒ √3a + b
⇒ √(1 – 3√3)2 = √3a + b
⇒ 1 – 3√3 = √3a + b
On comparing the left and right side equation, we get,
a = -3, b = 1
∴ a + b = -3 + 1 = – 2

39. (b)

GIVEN:
x + y = 1
Formula used:
( x + y)3 = x3 + y3 + 3xy ( x + y)

Calculation:
Here, we have
x + y = 1
On cubing both sides we get
(x + y)3 = 13
⇒ x3 + y3 + 3xy ( x +y) = 1
⇒ x3 + y3 + 3xy × 1 = 1
⇒ x3 + 3xy + y3
= 1

40. (a)

Given that,
a = (√2 – 1)1/3
By cubing the both side of the given equation.
a3 = √2 – 1
Then 1/a3 = 1/√2 – 1
Now multiply and divide the above equation by √2 + 1
⇒ 1/a3 = ( √2 + 1 ) / ( √2 + 1 ) x 1/(√2 – 1 )
⇒ 1/a3 = ( √2 + 1 ) x 1 / ( √2 + 1 ) x (√2 – 1 ) [ Use the formula (A + B)(A – B) = A2 – B2 ]
⇒ 1/a3 = ( √2 + 1 ) / ( 2 – 1 )
⇒ 1/a3 = √2 + 1
According to the question
( a – a-1 )3 + 3 ( a – a-1 )
= (a – 1/a)3 + 3(a – 1/a) Use the formula [ ( A – B)3 = A3 – B3 + 3AB(A – B) ]
= a3 – 1/a3 – 3 a x 1/a (a -1/a) + 3(a – 1/a)
= a3 – 1/a3 – 3 (a -1/a) + 3(a – 1/a)
= a3 – 1/a3
Pu the value of a3 and 1/a3
= √2 -1 – ( √2 + 1 )
= √2 -1 – √2 – 1
= -2

41. (a)

42. (b)

Given:
p + q = 10 and pq = 5

Concept used:
a2 + b2 = (a + b)2 – 2ab

Calculation:
Here,
p + q = 10 and pq = 5
⇒ p/q + q/p = (p2 + q2)/ pq
⇒ [(p + q)2 – 2 × pq]/pq
⇒ [102 – 2 × 5]/5
⇒ (100 – 10)/5 = 90/5 = 18

43. (c)

Given in question,
x + y = 18
By using algebraic formula
 x2 + y2 = (x + y)2 – 2xy
Put the value of x + y and xy as per given question,
⇒ x2 + y2 = (18)2 – 2 x 72
⇒ x2 + y2 = 324 – 144
⇒ x2 + y2 = 180

44. (a)

We can utilize the identity for the sum of cubes. The sum of cubes of three variables a, b, and is:

a3+b3+c3=3abc if a+b+c = 0 

In our case, we have:  (m−n)  + (n−r) + (r−m)

Simplifying this:

(m−n) + (n−r) + (r−m) = m − n + n − r + r − m = 0 

Since the sum is zero, we can apply the identity for the sum of cubes:

(m−n)3 + (n−r)3 + (r−m)3 = 3(m−n)(n−r)(r−m)

Now substitute 3(m−n)(n−r)(r−m) into the original expression:

3(m−n)(n−r)(r−m)/ 6(m−n)(n−r)(r−m)

Cancel out (m−n)(n−r)(r−m) from the numerator and denominator:

We know that,
(a + b + c)2 = (a2 + b2 + c2) + 2(ab + bc + ca)
⇒ 196 = 96 + 2(ab + bc + ca)
⇒ 2(ab + bc + ca) = 196 – 96 = 100
∴ (ab + bc + ca) = 100/2 = 50

46. (a)

Given expression can be written as
= 1/(1 x 4) + 1/(4 x 7) + 1/(7 x 10) + 1/(10 x 13) + 1/(13 x 16)
= 1/3{ 3/(1 x 4) + 3/(4 x 7) + 3/(7 x 10) + 3/(10 x 13) + 3/(13 x 16) }
= 1/3{ (4 – 1)/(1 x 4) + (7 – 4)/(4 x 7) + (10 – 7 )/(7 x 10) + (13 – 10)/(10 x 13) + (16 – 13/(13 x 16) }
= 1/3[(1 – 1/4) + (1/4 – 1/7) + (1/7 – 1/10) + (1/10 – 1/13) + (1/13 – 1/16)]
= 1/3[1 – 1/4 + 1/4 – 1/7 + 1/7 – 1/10 + 1/10 – 1/13 + 1/13 – 1/16]
= 1/3[1 – 1/16]
= 1/3[ (16 – 1)/16]
= 1/3[ (15)/16]
= 1 x 15/ 3 x 16
= 5/16

47. (a)

Let’s simplify it step by step:

(1−1/2)=1/2, (1−1/3)=2/3, (1−1/4) =3/4, …, (1−1/m)=(m−1)/m

The entire product becomes:

1/ 2 × 2/ 3 × 3/ 4 ×4/ 5⋯(m−1)/m

Notice that most terms in the numerator and denominator cancel out, leaving: 1/m

We can simplify each term inside the parentheses: 2 – (1/3) = 5/3, 2 – (3/5) = 7/5, 2 – (5/7) = 9/7

In general, the term for nn-th factor is:

2−(2n−1)/(2n+1) = 2(2n+1)−(2n−1)/ 2n+1

= 4n+2−2n+1/ 2n+1

=2n+3/ 2n+1

Thus, the product becomes:

5/ 3 × 7/ 5 × 9/ 7⋅⋯⋅1001/ 999

Notice that most terms in the numerator and denominator cancel out, leaving: 1001/ 3

(1 + 1/2) (1 + 1/3) (1 + 1/4) …. (1 + 1/150)
= 3/2 x 4/3 x 5/4 x … 151/150
= (1/2) x 151
= 151/2 = 75.5

50. (b)


Spread the love
Dhalendra Kothale

Dhalendra Kothale

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top

This will close in 0 seconds

Registration Form


This will close in 0 seconds

WhatsApp Join Telegram